Off-target inhibition of human dihydroorotate dehydrogenase (*h*DHODH) highlights challenges in the development of Fat mass and obesity-associated protein (FTO) inhibitors

Marco Tarullo^{1, ‡}, Guillermo Fernandez Rodriguez I^{, ‡}, Alessia Iaiza¹, Sara Venezia¹, Alberto Macone², Alessio Incocciati², Silvia Masciarelli³, Marcella Marchioni⁴, Marta Giorgis⁵, Marco Lucio Lolli⁵, Federico Fornaseri⁵, Ludovica Proietti⁶, Florian Grebien^{6,7,8}, Serena Rosignoli², Alessandro Paiardini², Dante Rotili⁹, Antonello Mai⁹, Elena Bochenkova¹⁰, Amedeo Caflisch¹⁰, Francesco Fazi³, Alessandro Fatica^{1,*}

¹Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome 00185, Italy.

²Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome 00185, Italy.

³Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome 00161, Italy. 4Institute of Biology, Molecular Medicine and Nanobiotechnology, CNR, Sapienza University of Rome, Rome 00185, Italy.

⁵Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy. ⁶Institute of Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria ⁷St. Anna Children's Cancer Research Institute (CCRI), Vienna Austria

⁸CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences,

Vienna, Austria

⁹Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome 00185, Italy.

¹⁰Department of Biochemistry, University of Zurich, CH-8057 Zürich, Switzerland.

*corresponding author: alessandro.fatica@uniroma1.it

Figure S1. Cell cycle analysis of FB23-2 treated K562 cells. Cell cycle distribution of K562 cells analyzed 48 h following treatment with 5 μ M FB23-2, in the presence or absence of 100 μ M uridine in the culture medium. DMSO-treated cells served as the control.

Figure S2. CETSA assay with *h*DHODH in K562 cells. Upper panel, representative Western blot analysis demonstrating the stabilizing effect of FB23-2 on *h*DHODH at various temperatures in K562 cells. Lower panel, graph illustrating the quantified levels of *h*DHODH relative to total proteins from three replicates. Data are represented as mean \pm SD. *P < 0.05, ***P < 0.001.

Figure S3. Superposed three-dimensional structures of representative FTO-inhibitors solved in complex with FTO. For each compound, the corresponding PDB code of the FTO complex is shown in the color-code legend. The 20Åx10Å cylinder-shaped cleft of hDHODH is shown as reference. According to docking analysis, the compounds indicated in bold (Supplementary Table I), due to their size/conformations, would make severe steric clashes with hDHODH and are therefore predicted as selective for FTO.