
FEBS Letters 581 (2007) 4120–4124
The protonation state of the catalytic aspartates in plasmepsin II
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Abstract Assigning the correct protonation state to the cata-
lytic residues is essential for a realistic modelling of an enzyme’s
active site. Plasmepsins are pharmaceutically relevant aspartic
proteases involved in haemoglobin degradation by Plasmodium
spp. In aspartic proteases, one of the two catalytic aspartates
is protonated, while the other is negatively charged. Here, multi-
ple explicit-water molecular dynamics simulations of plasmepsin
II, uncomplexed and with a hydroxypropylamine peptidomimetic
inhibitor, indicate that protonation of Asp214 favours a stable
active site structure. Moreover, the protonation state of the cat-
alytic aspartate has a strong influence on a linear chain of hydro-
gen bonds with the adjacent side chains.
� 2007 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

The malaria parasite, Plasmodium, digests host haemoglobin

as a nutritional source during the erythrocytic stage of the dis-

ease. Four pepsin-like aspartic proteases, named plasmepsins

(PM I–IV), are involved in haemoglobin breakdown in

Plasmodium falciparum, which causes the most fatal form of

malaria. As PMs are unique to Plasmodia, these enzymes are

regarded as potential drug targets [1]. However, despite their

pharmaceutical significance, the dynamics of PMs have only

recently started to be investigated by computational studies

[2–5]. Conversely, the folding and ligand binding of an AIDS

related retroviral aspartic protease, HIV protease, were studied

by different simulation techniques, including implicit and expli-

cit solvent molecular dynamics (MD), Brownian dynamics and

G�o models (see e.g. [6–8]).

PM II is the most studied PM. It is translated as an inactive

zymogen (proenzyme), and its activation involves the cleavage

of its N-terminal part. This transition (maturation) brings

about a domain shift in the enzyme’s N-domain [9], which en-

ables the formation of the catalytic site. The catalytic residues

are D34 and D214, one of which is protonated while the other
Abbreviations: PM, plasmepsin; MD, molecular dynamics; BACE,
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is negatively charged in the digestive vacuole (pH � 5) where

haemoglobin cleavage takes place.

Simulation and docking studies of aspartic proteases have

shown that assigning the correct protonation state to the cat-

alytic residues is necessary for a realistic modelling of the bind-

ing site. This is particularly relevant in computer-aided drug

design, where the calculated binding energies are often sensi-

tive to the location of protons in the binding site. Accordingly,

this problem has been addressed, e.g., in b-secretase (BACE),

but despite efforts from several groups [10–13] there is yet no

consensus regarding the protonation state. Similarly, the pro-

tonation state of the catalytic aspartates in PM II is not

known. In a very interesting computational study of the cata-

lytic mechanism in PM II, D34 was protonated [3], but proton-

ation of D214 was observed to yield a better agreement with

the binding energies of specific PM IV inhibitors [14].

Here, the protonation state of the catalytic aspartates in PM

II is investigated by explicit solvent molecular dynamics (MD)

simulations. The results of 22 independent MD runs, for a total

simulation time of more than 0.45 ls are reported below. Four

MD runs of PM II were started from the crystal structure of the

apo enzyme (PDB: 1LF4 [15]). In two of these runs, D34 was

protonated and D214 was negatively charged, while in the

remaining two D214 was protonated and D34 was negatively

charged. Six runs, three with D34 protonated and three with

D214 protonated were started from the proPM structure

(PDB: 1PFZ [9]) upon manual removal of the N-terminal pro-

segment. The simulations of cleaved proPM were performed to

examine the effect of protonation state on the maturation of the

enzyme (structural details on the conformational transitions in-

volved in the maturation process will be given elsewhere). Four

additional runs were performed using a structure of PM II with

an alternative conformation of the flap region (PDB:2BJU

[16]). Finally, eight simulations of PM II in the presence of a

transition state analogue inhibitor, were carried out to examine

the protonation state of the complexed enzyme. The analysis of

the simulations shows that the protonation of D214 favours a

stable active site structure, which is consistent with the crystal

structures of the protein. Moreover, it is shown that the choice

of protonation state influences the stability of the chain of

hydrogen bonds at the catalytic site.
2. Methods

2.1. Molecular dynamics simulations
MD simulations were performed by use of the Gromacs program

[17,18], version 3.3.1, with the OPLS-AA force field [19]. Simulations
of mature PM II were carried out using the structure of the apo-
enzyme (PDB:1LF4 [15]). Five loop residues were not located in the
experiment (residues 238–243) and were modelled based on a structure
blished by Elsevier B.V. All rights reserved.
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of PM II complexed with pepstatin (PDB:1XE5). The structure of the
proenzyme (PDB:1PFZ [9]) was used for simulations of the cleaved
zymogen. All residues belonging to the premature portion of the en-
zyme were deleted, to obtain a model structure of the enzyme immedi-
ately after the cleavage of its premature segment. Missing residues at
the flap region were assumed to have an open conformation, since it
allows more conformational freedom [20]. They were therefore mod-
elled based on the structure of PM II with an open flap conformation
(PDB:2BJU [16]). The same structure was also used to simulate the
protein in the alternative (open) flap conformation. Simulations of
inhibitor-bound PM II were carried out using the structure of the pro-
tein with the rs370 transition state analogue (PDB:1LF2 [21]). The ani-
line nitrogen (pKa = 4.87 [22]) of the inhibitor was protonated, to
mimic acidic conditions. Standard OPLS atom and bond types were
used for the inhibitor. The atomic charges were set by fitting to the
electrostatic potential around the molecule using the Kollman–Sing
method [23], where the energy was calculated using Hartree–Fock self
consistent field and the 6-31Gd Gaussian. Quantum chemical calcula-
tions were performed by the computer program GAMESS [24].
Although fast rotations were observed around the v2 dihedral angle
of the catalytic aspartates in the simulations of the uncomplexed pro-
tein, the four possible locations of the proton (i.e., Od1 and Od2 of
D34 and D214) were included in the simulations of the bound protein.
All structures were downloaded from the protein data bank [25].

After the preparation of the protein structure, the protein was im-
mersed in a truncated octahedral box containing TIP4P model waters
[26]. Water molecules were removed from the box if the distance be-
tween any protein atom and any atom of the water was less than the
sum of the van der Waals radii of both atoms. The edges of the box
extended to at least 1.3 nm from the solute. Na+ and Cl� ions were
added randomly by replacing non-crystallographic water molecules
in order to neutralise the charge of the system and maintain a salt con-
centration of 0.1 M. Cation parameters derived by Åqvist were used
for the sodium [27]. Before each MD simulation, internal constraints
were relaxed by energy minimisation, until the maximal force on indi-
vidual atoms was smaller than 100 kJ mol�1 nm�1. After the minimisa-
Table 1
Simulations details

Simulationa PDB
code

Protonated
Asp

Duration
(ns)

Maximal
backbone
RMSD (nm)

Mature 1 1LF4 214 20 0.23
Mature 2 1LF4 214 20 0.25
Mature 3 1LF4 34 20 0.27
Mature 4 1LF4 34 20 0.24

Alt. Flap 1 2BJU 214 20 0.28
Alt. Flap 2 2BJU 214 20 0.23
Alt. Flap 3 2BJU 214 20 0.27
Alt. Flap 4 2BJU 214 20 0.27

Cleaved 1 1PFZ 214 20 0.24
Cleaved 2 1PFZ 214 88 0.25
Cleaved 3 1PFZ 214 20 0.27
Cleaved 4 1PFZ 34 36 0.28
Cleaved 5 1PFZ 34 20 0.22
Cleaved 6 1PFZ 34 10 0.31

Complexed 1b 1LF2 214 20 0.22
Complexed 2b 1LF2 214 20 0.28
Complexed 3b 1LF2 214 10 0.21
Complexed 4b 1LF2 214 10 0.16
Complexed 5b 1LF2 34 10 0.17
Complexed 6b 1LF2 34 10 0.17
Complexed 7b 1LF2 34 10 0.15
Complexed 8b 1LF2 34 10 0.17

aSimilar runs (e.g. mature 1 and mature 2) were started using different
random distributions of the initial velocities.
bIn the runs of the complex with the hydroxypropylamine inhibitor
rs370 (Complexed), each catalytic aspartate was protonated twice on
Od1 and twice on Od2.
tion, initial atomic velocities, corresponding to the Boltzmann
distribution at a temperature of 300 K, were randomly assigned and
a constrained MD run was performed for 100 ps. During the con-
strained simulations, protein heavy atoms were fixed to their initial
positions with a force constant of 1000 kJ mol�1 nm�2. The constraints
were released, and the system was equilibrated for 1ns before data col-
lection for analysis. During the MD runs, the LINCS algorithm [28]
was used to constrain the lengths of bonds, while water molecules were
kept rigid by use of the SETTLE algorithm [29]. The time step for the
simulations was 2 fs. The temperature and pressure were coupled to an
external bath with Berendsen’s coupling algorithm [30] (Pref = 1 bar,
sP = 0.5 ps; Tref = 300 K; sT = 0.1 ps). Van der Waals forces were trun-
cated at 1.0 nm with a plain cutoff. Long-range electrostatic forces
were treated using the particle mesh Ewald method [31]. A total of
22 simulations were performed, as summarised in Table 1. Root mean
square deviation (RMSD) values, calculated over all heavy atoms in
the backbone,are also reported in the table.
2.2. Hydrogen bond analysis
Direct hydrogen bonds (HBs) between two residues were calculated

with the program g_hbond, which is available in Gromacs. The criteria
for a HB were a donor (nitrogen or oxygen) to acceptor (oxygen)
distance 60.35 nm and an acceptor–donor–hydrogen angle 630�,
i.e., default Gromacs parameters.

HBs between the Od atoms of the catalytic aspartates were also con-
sidered where the donor and acceptor were bridged by one water mol-
ecule. In this case, a HB was determined based only on a distance
criterion, i.e., donor to water–oxygen and water–oxygen to acceptor
distances 60.35 nm.
3. Results and discussion

3.1. Hydrogen bonds between the catalytic aspartates in the Apo

enzyme

Analysis of direct and water-mediated HBs in the catalytic

dyad is useful for assessing the structural stability of the active

site. This analysis reveals that when D214 was protonated a

HB between the catalytic aspartates was present during more

than half of the simulation time in the runs of mature PM II

(Table 2). On the other hand, when D34 was protonated, a di-

rect HB between the carboxy groups of the catalytic aspartates

was never observed and the formation of a solvent-mediated

HB was sporadic. Furthermore, the simulations of cleaved

proPM revealed a similar trend (Table 2). When D214 was

protonated, direct HBs are rare but solvent-mediated HBs

occur in about 18% of the simulation time. Conversely, the

formation of HBs between the catalytic aspartates in the cor-

responding simulations with D34 protonated is infrequent

(4% over all simulations).

A HB between the catalytic aspartates is not necessarily

present when PM II is engaged in the catalytic activity or when

it binds an inhibitor. Yet, in both cases the catalytic aspartates

are located in the proximity of each other. The distributions of

the closest Od–Od distances between D34 and D214 (Fig. 1)

provide further evidence on the preferred protonation state.

The distribution in the simulations of mature PM II with

D214 protonated has two maxima, at 0.25 nm and 0.42–

0.45 nm (Fig. 1, black trace). These maxima correspond to

the location of the catalytic dyad either at a contact distance

or separated by one water molecule. As a basis of comparison,

the distance between the two nearest Ods in the crystal struc-

tures is 0.27–0.35 nm (Fig. 1, shaded area) [15]. It should be

noted that the distribution of distances observed in the simula-

tions is not expected to fully overlap with the experimental val-

ues, which were determined in a non-physiological solution



Table 2
Percentage of HB presence in the simulations

Conformation Protonation D34–D214a D34–S37b S37–W41 W41–Y77 D214–T217c

Direct Total

Mature 214 30 63 94 0 79 68
Mature 34 0 3 6 0 89 90
Alt. Flap 214 46 78 97 0 0 44
Cleaved 214 0 18 86 9 9 37
Cleaved 34 0 4 6 48 0 96
Complexed 214 83 92 100 0 86 77
Complexed 34 43 51 89 0 65 95

Percentage values were calculated upon cumulating simulations of the same type. For simulation conditions, see Table 1. The HBs were calculated
only between the side-chain atoms.
aThe total number of HBs includes solvent insertion.
bThe hydroxyl of S37 acts as a donor.
cThe hydroxyl of T217 acts as a donor.

Fig. 1. The distributions of the minimal D34Od–D214Od distance.
Black and red traces correspond to the simulations of the mature
enzyme, cyan and blue traces to the simulations of the cleaved
proenzyme. The vertical lines represent the distances in the crystal
structures of PM II (shaded area) and proPM (blue). The correspond-
ing distributions from the simulations of the complexed enzyme are
similar to those of the apo-enzyme with D214 protonated, and are
omitted from the figure for clarity.
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that favours crystallisation. Yet, it is striking that the range of

values observed in the crystal structures of PM II is much

shorter than the distance distribution of the simulations with

protonated D34 (Fig. 1, red trace).

The distributions of the closest Od–Od distances at the cat-

alytic dyad in the simulations of the cleaved proPM are shifted

to larger separation with respect to those of the mature en-

zyme. This difference is consistent with the crystal structures,

as the corresponding distance is larger in proPM compared

to mature PM II (0.60 versus 0.35 nm) [9,15]. Interestingly,

the distance distribution in the simulation of the cleaved

proPM with D214 protonated (cyan trace) has local maxima

at 0.25 and 0.45 nm, which match a direct and a solvent-med-

iated HB, respectively. Note that the corresponding distribu-

tion for proPM with D34 protonated (blue trace) only starts

at a distance of 0.35 nm. The protonation of D214 is therefore

more likely to promote the activation of PM II.

3.2. The hydrogen bond network in the Apo active site

The catalytic site of PM II is characterised by a linear chain

of HBs, reaching from the catalytic dyad to the flap region
(T217–D214–water1–D34–S37–water2–Y77–W41) [15], as in

most other pepsin-like enzymes of known three-dimensional

structures [32]. Indeed, each of these HBs was present in more

than 50% of the simulation time in the simulations of the

mature PM II with D214 protonated.

Further analysis of the linear chain of HBs reveals that the

protonation state of the catalytic aspartates has a strong influ-

ence on the presence or absence of these HBs. As an example,

consider the S37Oc–D34Od HB (where S37 is the donor),

which is present in the crystal structure of apo PM II. This

HB exists during 94% of the simulation time when D214 is pro-

tonated, but only during 6% of the time when D34 is proton-

ated (Table 2). On the other hand, the T217Oc1–D214Od HB,

which is also present in the crystal structure, is more prevalent

when D34 is protonated (during 90% compared to 68% of the

simulations with protonated D214). This is in agreement with

MD simulations of BACE, with protonated D32 (correspond-

ing to D34 in PM II), during which the T231Oc1–D228Od
(T217 and D214 in PM) HB was stable [33]. However, in the

simulations of BACE the S35Oc–D32Od HB was not stable.

Furthermore, while in the simulations of PM II water 2 is

always a HB donor to S37, in BACE water2 and S35 switched

their donor/acceptor roles when the S35Oc–D32Od HB was

broken, which, as the authors discussed, conforms with the

catalytic mechanism suggested by Andreeva and Rumsh

(based on the assumption that D32 is protonated) [32]. In

PM II, water 2 is always a HB donor to S37 (Fig. 2), and when

D34 is protonated the distance between D34 and D214 is too

large to support the base activation catalytic mechanism. Inter-

estingly, when D214 is protonated, the linear HB chain is sim-

ilar to the HB arrangement which was suggested to stabilise

the tetrahedral intermediate in pepsin-like proteases [32], even

if the HB between W41 and Y77 is missing (Fig. 2A and C).

3.3. Simulations of the complexed enzyme

The rs370 transition state analog inhibitor (see Supplemen-

tary Fig. 1), has a hydroxypropylamine linker connecting

Phe and Leu side chains in the P1 and P01 positions, respec-

tively, mimicking the Phe-Leu scissile bond in haemoglobin.

During the simulations, the inhibitor’s hydroxyl group is

involved as a donor in a hydrogen bond with one of the car-

boxylic oxygens of the charged residue (D34 when D214 is pro-

tonated and vice versa). This hydrogen bond is present in 98%

of the simulation time when D214 is protonated, but only

in 68% of the simulation time when D34 is protonated



Fig. 2. The linear chain of HB in the substrate binding site in the simulations with (A) D214 protonated (the linear HB chain consists of T217–D214–
water1–D34–S37–water2–Y77–W41); (B) D34 protonated (T217–D214, S37–water2–Y77–W41), and (C) D214 protonated and alternative flap
conformation (T217–D214–water1–D34–S37–water2–W41).
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(Table 3). The protonated aspartic acid donates a hydrogen

either to the other catalytic residue or to the inhibitor’s hydro-

xyl oxygen, and the linear chain of hydrogen bonds in the ac-

tive site is almost always present in the simulations (Table 2).

The stability of this linear chain of hydrogen bonds is higher
when D214 is protonated. Moreover, in one of the four simu-

lations with D34 protonated, the inhibitor started to exit from

the active site after 4.4 ns of simulation time (see Supplemen-

tary Fig. 2). Conversely, the inhibitor was tightly bound to

the enzyme in all four runs with protonated D214.



Table 3
Percentage of HB presence between the catalytic aspartates and the
inhibitor

Donor Acceptor HB presence (%)

D214 protonated D34 protonated

D214 Inhibitor 14 –
Inhibitor D214 0 68
D34 Inhibitor – 40
Inhibitor D34 98 3
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4. Conclusions

Multiple explicit-water MD simulations of PM II were per-

formed to investigate the protonation state of the catalytic

aspartates. To mimic the conditions before and during the pro-

cess of substrate binding, PM II was simulated both uncom-

plexed (starting with different conformations of the flap) and

in the complex with a transition state analogue inhibitor.

The simulations’ results and in particular the HB analysis

and the distributions of minimal distance between Ods show

that protonation of D214 is more consistent with the crystallo-

graphic data and catalytic mechanism.
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Appendix A. Supplementary material

Supplementary data associated with this article can be found,

in the online version, at doi:10.1016/j.febslet.2007.07.033.
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