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Figure S1: Robustness of NetSAP analysis. a-d) Evaluation of five different simulations with different amplitudes of excitatory current
noise, in the range 0.01-0.3 pA (indicated in the legend from light to dark blue). These simulations are highlighted by gray circles in Fig.
8b, and have coherence levels of 0.67, 0.39, 0.17, 0.10, and 0.06, respectively. a) Variability estimation of the whole analysis pipeline. For
each data set we run NetSAP 35 times changing only the random seed for the short spanning tree construction (5000 search attempts) and
the automatic selection of barriers. The median is shown as an horizontal segment while the lower and upper hinges of the box represent the
25th and 75th percentiles. Outliers are indicated as black dots. b-d) Evaluation of parameters. The red vertical line indicates the values that
are used as standards unless specified otherwise. b) Evaluation of different methods for network inference. We decided to use the Minkowski
similarity because the resulting NMI scores appear to be more consistent across different noise levels, i.e., they have less variability and higher
scores in average. In this plot, MI stands for mutual information estimated using maximum likelihood, FT for Fourier transformation of the
windowed data, while WGCNA[122] is the squared Pearson correlation. We also tried to infer the networks using the covariance matrix of
each window. Other methods were classical metrics like Euclidean and Minkowski distances that we used in the form of similarities. ¢) NMI
scores for different number of search attempts for the construction of the short spanning tree. d) Estimation of the best window size for the
network inference procedure.
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Figure S2: Computational time in seconds used for different analysis parameters. a) Time needed for the the four main steps of the analysis
during variability estimation (indicated in the legend). Only the average results are shown while the standard deviation is omitted because it
is usually less than 18 seconds. As for the other panels in this figure, the parameter choices were the standard ones from S1, i.e., a Minkowski
similarity metric with window size of 80 snapshots and 5000 search attempts. b) Evaluation of the computational time needed for different
windows used to infer the networks for each time point. c¢) Time needed for different number of search attempts. d) Different inference
methods can have significantly different computational times. In particular, maximum likelihood estimation of mutual information, MI_ML,
is roughly five times slower than the Minkowski similarity.
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Figure S3: Robustness of barrier selection procedure for different noise levels of the simulation. a-e) The temporal annotation is depicted by gray points in the background. They are plotted as a function of their
position in the progress index (x-axis) and the experimental times (y-axis). The dark red line shows the IMIC (inverted maximal information coefficient), which was interpolated to approximate a continuous line
along the progress index. The blue crosses indicate the ’barrier candidates’ and their respective height on the IMIC curve. The final selection of divisors (dotted vertical lines) is done by ranking and choosing the
highest peaks found (black dots at the top). Using the first three divisors with the highest IMIC values, we computed the NMI score (shown as the horizontal dark blue line) between the inferred and true labels.
As negative controls, we picked barriers randomly from a uniform distribution 500 times, and we use the same annotation to calculate the NMI (green dots, position of the barriers on the x-axis and score on the
y-axis). The mutual distances between separators were restricted to be larger than a minimum number of snapshots of 2500. Red dots represent the set of those random divisors with the maximum NMI score. The
five simulations in (a-e) refer to the ones selected in Fig. 8. a) Almost perfect simulation. Here the noise amplitude is 0.01 pA. b-d) Intermediate cases with about 0.15 pA of noise current. e) Worst case scenario
with 0.3 pA. Notably, in this case the chosen barriers do not perform better than a random pick in terms of NMI. f-j) Density distributions of NMI values found for a-e are represented by light blue filled curves
when calculated using the barriers picked randomly. The NMI score found with the IMIC optimization procedure is indicated by the dark red vertical line along with its relative Z-score. Only the simulations with
noise < 0.3 pA (i.e., panels (f-1)) are significant (p-value < 5%).



a ] o A — o o | 100 b 1.00- o o . 1.00
0.75- 0.75 0.751 . - 0.75
@) . ; . z O . - z
= 0501 : _ : 050 £ = 0507 : 3 050 =
0.25 . . . 0.25 0.251 . . . 0.25
0.00 - — — - .00 0.00 — - — .00

0 20000 40000 60000 80000 0 20000 40000 60000 80000
Progress Index Progress Index
c d
60000
30000
40000+
20000
2 2
2 [
[0) N [6)
a & a
: x
@ 8
100001 = 200001 13
P
= S
W
©
0- 04
0e+00 2e-05 4e-05 6e-05 0e+00 26-05 4e-05 6e-05
NMI NMI

Figure S4: Randomization controls. a) The progress index from the simulation used in Fig. S3a is shuffled randomly on the temporal axis,
producing a random distribution. The IMIC scores are all high because the sampling density is not high enough to make the time histograms
sufficiently similar to each other for the chosen number of bins. The resulting NMI scores, both for the chosen divisors and the random picks
are around 0 (the dark blue line and red dots, respectively). b) Similarly to (a), we shuffled the true annotation obtaining NMI scores around
0. c-d) The distribution of scores found randomly is close to 0.
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Figure S5: Robustness with respect to artificial variations in the number of clusters. a) Using the analysis results shown in Fig. S3a, we
artificially modified the number of clusters in the annotation. Here, we kept the number of clusters searched at four but merged two clusters
in the true label vector. b) The same annotation of (a) is used to find three clusters instead of four. ¢) In this case, we modified the true label
vector by dividing the last basin of the progress index evenly into two labels (4 and 5). This artificial augmentation of the number of clusters
lowers the resulting NMI for the automatic procedure (compare horizontal dark blue line at NMI = 0.77 in (c) with the one at NMI = 0.84
in Fig. S3) but not for an optimal random selection of barriers. Here, we used 1500 random picks to overcome the enhanced difficulties in
finding the best random splits. The NMI values are similar to the original analysis in (a). d-f) Distributions of scores for the tests in panel
(a~c). f) Here, the p-value (0.01) is significant and reflects how the barrier selection procedure selects the most important barriers first in
order to have the maximum number of correct cluster assignments.
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