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S1 Supporting Methods and Tables 

S1.1 NMR model and preparation of the initial structures 

The reference initial structure for our molecular dynamics (MD) simulations was derived from the first 

conformation of the Aβ42 protofibril bundle determined by solution NMR by Lührs et al.1 The structure is 

composed of five chains and features two characteristic and structurally different ends, called odd and even end 

respectively (see Fig. 1B in the main text). The ends cannot be interconverted and thus constitute two different 

structural templates for the addition of monomers during fibril growth. This lack of symmetry has been related to 

the unidirectional growth of amyloid fibrils seen in experiments.2, 3 In the original paper1 it is hypothesized that 

the odd end is the fast-growing one based on results from Aβ−analog peptide inhibitors of amyloid growth. 

Conversely, a recent in silico study4 constructs a kinetic model to show that the binding to the even end should be 

favored. 

Excluding the first 17 residues, the model by Lührs et al. comprises a β strand – loop – β strand architecture at the 

monomer level. Adjacent chains are engaged in two parallel in-registry β-sheets, with β1 encompassing residues 

18-26 (N-terminal side) and β2 residues 31-42 (C-terminal β−sheet), which are further stabilized by staggered side 

chains contacts between the two sheets. This model has been widely studied in recent years through computer 

simulations5, 6, 7, 8, 9, 10, 11, 12 and has proven to be rather stable under the action of modern force-fields,13, 14, 15 which 

is not necessarily the case for other architectures.16, 17 We manually added the missing disordered residues of the 

N-terminal parts to each of the five chains. These tails were subsequently equilibrated with 30 million Monte Carlo 

steps consisting of backbone and side chain dihedral angle pivot moves following standard methodology.18 The 

conditions for this equilibration are not particularly important (310 K, partial charges and bonded potentials of 

the recent CHARMM36 force field,19 ABSINTH implicit solvent model),20  but it is crucial that the rest of the model 

was held completely rigid. The final conformation was solvated in a cubic box containing ~4.8x104 charmm-TIP3P 

water molecules and 0.15 M  monovalent ions before being energy-minimized and relaxed through an NPT (1 atm, 

310 K) simulation of ~1 ns, which was performed in GROMACS21 and returned a final cubic box dimension of 

113.7 Å  per edge. We prepared a second initial structure from the previous one by manually removing about 20 

protofibril-internal water molecules and by pulling apart a particularly long-lived salt bridge formed by the N-

terminus of chain D and the C-termini of chains E and D with an external force. During the pulling, the rest of the 

protofibril was frozen but the solvent was mobile. We refer to this second initial structure by adding a * to the 

relevant simulations in Tables S1 and S2 below. 

S1.2 Simulations 

S1.2.1 General settings 

All the simulations that are described below shared the following basic setup. We simulated in the canonical (NVT) 

ensemble, i.e., at constant volume. The system was contained in a cubic periodic box and integrated with 2 fs 

integration time step at 310 K, coupled with the velocity-rescaling thermostat22 and a decay time of 2 ps. All native 

bonds were constrained with SHAKE23 at force-field reference values. We used generalized reaction-field 

corrections24 to the Coulomb potential with a cutoff of 12 Å and a 16 fs update interval for the (buffered) neighbor 

lists. To alleviate an expected lack of stability on long timescales of the protofibril model due to the limited number 
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of chains we included, we biased the φ and ψ angles of residues 18-24, 26, 31, 32, 34-36 and 39-41 of chains B, C, 

D and E, viz. of all the chains except the terminal one at the odd end (chain A) with 2D Gaussian wells (see Fig. 1C-

D in the main text) with a universal depth of 1 kcal/mol and residue-specific width parameters. These parameters 

were determined by a short preliminary simulation initiated from the aforementioned (first) starting structure. 

The residues not included are those in the N-terminus, the loop, or those that exhibited φ/ψ heterogeneity in the 

trial simulation for one or more of the chains. All simulations used the CHARMM36 force field,19 and trajectories 

were appended every 2 ps. 

S1.2.2 PIGS and conventional sampling simulations 

The first initial conformation (see S1.1) was used as the starting point of an initial Progress Index-Guided 

Sampling25 or PIGS simulation. All the PIGS simulations were run with CAMPARI (http://campari.sourceforge.net/). 

As outlined briefly in the main text (see Methods) and in detail in the reference publication,25 PIGS proceeds as a 

series of termination and reseeding cycles of multiple copies of a system evolving stochastically under the same 

Hamiltonian. The termination and reseeding decisions rely on a way to represent the system, and here we used a 

subset of backbone ψ angles of chain A for this purpose. A PIGS simulation will ultimately diversify a given 

representation, which corresponds to enhanced conformational exploration on the unbiased potential energy 

surface of the system. The choice of representation is what enables us to focus the exploration on a particular 

subset of the system without having to resort to a low-dimensional reaction coordinate. Here, we always 

employed 32 copies in a PIGS run and used the final snapshots of the 16 top-ranked copies as candidates for 

reseeding the final snapshots of the bottom-ranked 16 copies at 2 ps intervals. PIGS retains no memory beyond a 

single 2 ps stretch, and the ranking is high for copies occupying regions of phase space that feature low sampling 

density and are unique with respect to the other copies across an individual stretch. 

As expected, once the copies of the simulated system have all diversified in the chosen representation, the 

reseeding rate drops (see Figure S2), and the PIGS protocol approaches conventional sampling. This behavior can 

be altered by changing the number of copies. Here, it proved impossible to increase this number far enough due 

to limitations in available computing resources. Alternatively, a change in representation provides an attractive 

means to focus on particular degrees of freedom as others may have lost their importance throughout the PIGS 

run. Ongoing research is devoted to the automatic weighting of degrees of freedom26 to yield a sufficiently 

informative representation at any given reseeding point. Lastly, new PIGS runs can be created from intermediate 

points deemed interesting visually and/or in terms of low-dimensional projections. This is similar in spirit to 

trajectory swarm27 or the recent WExplore methods.28 We made extensive use of both of the latter approaches 

to enhance the exploration further, and these modifications are summarized in Tables S1 and S2. For example, 

the very first simulation mentioned at the beginning of this section is termed PigsA in Tables S1 and S2, and 

involved 32 replicas covering ~10.5 ns each. 

Our entire data set can be roughly partitioned into two halves. The first half consists of the successive iteration of 

PigsA along with two additional PIGS runs, named PigsB and PigsC. These started from the same initial structure 

and served primarily to increase and evaluate robustness in terms of coverage of the conformational space in the 

vicinity of the starting conformation. The second half of the data set, i.e., a further ~5 µs of cumulative simulation 

time include conventional sampling runs with GROMACS from both initial structures (Gromacs and Gromacs* in 

Tables S1 and S2), three PIGS runs from the second initial structure (see S1.1), named PigsA*, PigsB* and PigsC*, 

and two conventional runs from two interesting structures that were identified during the successive iterations 
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of PigsA. These runs were termed Gromacs0 and Gromacs21, and, like all GROMACS runs, they used 16 

independent copies each and were able to emulate the same Gaussian well potentials used in all other PIGS runs 

thanks to the GROMACS built-in support for CMAP29 and PLUMED.30 The reasons behind this additional sampling 

effort were twofold: i) to increase statistical robustness; ii) to test for the influence of the particular initial 

condition we had used. One-to-one comparisons of results derived from just the first half or the entire data set 

are used for both tasks. 

 

PigsA 

Pigs0 (1) 

Pigs0_24  (1)    

Pigs0_29 (1) 
Pigs0_29_27C (1)   
Pigs0_29_27L (1)   

Gromacs0 (1)   
Pigs0_14C (1)    
Pigs0_14L (1)    

Pigs3 (1)     
Pigs8 (1)     

Pigs10  (1)     
Pigs12 (1)     

Pigs21 (1) 

Pigs21LV (4)    

Pigs21V (4) Pigs21VL (8) 

Pigs21VL_CL (1)  
Pigs21VL_L (32)  
Pigs21VL_Lc (2)   

Pigs21VL_Lct (32) 
Pigs21VL_Lct_C (1) 
Pigs21VL_Lct_L (1) 

Gromacs21 (1)    

Pigs23 (1) 

Pigs23_29C (1) Pigs23_29C_16L (1)   
Pigs23_29L (1)    
Pigs23_4 (1)    
Pigs23_9 (1)    

Pigs25 (1)     

Pigs27 (1) 

Pigs27_0 (1)    
Pigs27_25 (1)    

Pigs27_25FC (1)    

Pigs27_11 (1) 
Pigs27_11m (4) 

Pigs27_11m_25 (1)  
Pigs27_11m_13 (1)  

Pigs27_11m_fC (4)   
PigsB     
PigsC     
PigsA*     
PigsB*     
PigsC*     

Gromacs     
Gromacs*     

Table S1: Summary of the independent simulations we performed. All PIGS simulations involved 32 copies, and all 

conventional (GROMACS) simulations employed 16 (independent) copies. Simulations are ordered from left to right in parent-

child relationships, meaning that a simulation in column N was started from one of the replicas of the simulation in column N-

1 (column 1 is leftmost and contains the simulations that were started from either one of the two initial structures (* as 

superscript refers to the second one). The precise number of parent replicas used to restart a specific run is annotated within 

parentheses. For example, run Pigs21LV was restarted from 4 final snapshots among the set of replicas of run PIGS21, and 

those were evenly distributed between the 32 structures needed to initiate a PIGS run. The simulations that form the “first 

half” of the data set mentioned in S1.3 are highlighted in blue. 
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PigsA, PigsB, PigsC, PigsA*, PigsB*, PigsC* (0) 
Sim. Time [ns] 0 : 10.5     

Representation 
19 20 21 22 23 24 26 31 32 34 35 

36 39 40 41 
    

Pigs0 (1,4) 
Sim. Time [ns] 0 : 7 7 : 12.6 12.6 : 15.3 15.3 : 17.5  

Representation 31 32 34 35 36 39 40 41 
19 20 21 22 23 24 26 31 32 

34 35 36 39 40 41 
17 18 19 20 

21 
17 18 19 20 
21 39 40 41  

 

Pigs0_24 (0) 
Sim. Time [ns] 0 : 2.3     
Representation 17 18 19 20 21 30 31 32      

Pigs0_29 (0) 
Sim. Time [ns] 0 : 2.3     
Representation 17 18 19 20 21 30 31 32     

Pigs0_14C (0) 
Sim. Time [ns] 0 : 1.5 1.5 : 2.3    
Representation 30 32 36 30 32 36 40    

Pigs0_14L (0) 
Sim. Time [ns] 0 : 2.3     
Representation 17 18 19 20     

Pigs0_29_27C (0) 
Sim. Time [ns] 0 : 2.3     
Representation 34 35 36 39 40 41     

Pigs0_29_27L (1,1) 
Sim. Time [ns] 0 : 2.3 2.3 : 4.5    
Representation 17 18 19 20 21 20    

Pigs3 (0) 
Sim. Time [ns] 0 : 2.4 2.4 : 3.2    

Representation 
19 20 21 22 23 24 26 31 32 34 35 

36 39 40 41 
17 18 19 20 21 32 34 35 36 

39 40 41 
   

Pigs8 (2,1,1) 
Sim. Time [ns] 0 : 2.8 2.8 : 3.6 3.6 : 4.4 4.4 : 5.2  

Representation 
19 20 21 22 23 24 26 31 32 34 35 

36 39 40 41 
17 18 19 20 21 30 31 32  18 20 17 18 20  

Pigs10 (0) 
Sim. Time [ns] 0 : 2.8     

Representation 
19 20 21 22 23 24 26 31 32 34 35 

36 39 40 41 
    

Pigs12 (0) 
Sim. Time [ns] 0 : 7 7  : 9.9    

Representation 31 32 34 35 36 39 40 41 
19 20 21 22 23 24 26 31 32 

34 35 36 39 40 41 
   

Pigs21 (2,4,4) 
Sim. Time [ns] 0 : 6.6 6.6 : 10.8 10.8 : 14.7   

Representation 
19 20 21 22 23 24 26 31 32 34 35 

36 39 40 41 
17 18 19 20 21 32 34 35 36 

39 40 41 
24 34 35 36   

Pigs21LV (0) 
Sim. Time [ns] 0 : 2.3 
Representation 17 18 19 20 21 24 

Pigs21V (0) 
Sim. Time [ns] 0 : 1.5 
Representation 24 

Pigs21VL (3,1,1,1) 
Sim. Time [ns] 0 : 0.8 0.8 : 1.5 1.5 : 3.1 3.1 : 3.9 3.9 : 4.7 

Representation 24 17 18 19 20 21 24 
17 18 19 20 

21 
31 32 32 
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Pigs21VL_CL (0) 
Sim. Time [ns] 0 : 0.8     
Representation 17 18 19 31 32     

Pigs21VL_L (0) 
Sim. Time [ns] 0 : 2.3     
Representation 17 18 19 20 21     

Pigs21VL_Lc (0) 
Sim. Time [ns] 0 : 2.3     
Representation 17 34 35 36     

Pigs21VL_Lct (0) 
Sim. Time [ns] 0 : 1.4     
Representation 34 35 36     

Pigs21VL_Lct_C (0) 
Sim. Time [ns] 0 : 0.8 0.8 : 1.5    
Representation 34 35 36 31 32 34 35    

Pigs21VL_Lct_L (0) 
Sim. Time [ns] 0 : 2.3     
Representation 17 19 21     

Pigs23 (2,1,1) 
Sim. Time [ns] 0 : 0.8 0.8 : 1.3 1.3 : 2.1 2.1 : 2.9  

Representation 17 18 19 20 30 31 32 35 39 40 41 30 31 32 34 35 39 
30 31 32 34 

35 36 
18 20 30 31 

32 35 
 

Pigs23_29C (1,1) 
Sim. Time [ns] 0 : 0.8 0.8 : 1.5    
Representation 30 31 32 34 35 36 36 39 40 41    

Pigs23_29C_16L (0) 
Sim. Time [ns] 0 : 0.8     
Representation 17 18     

Pigs23_29L (0) 
Sim. Time [ns] 0 : 0.8     
Representation 17 18 19 20     

Pigs23_4 (0) 
Sim. Time [ns] 0 : 0.8     
Representation 18 20 30 31 32     

Pigs23_9 (0) 
Sim. Time [ns] 0 : 1.5     
Representation 18 20 31 32 35 36     

Pigs25 (1,1) 
Sim. Time [ns] 0 : 1.4 1.4 : 2.3    

Representation 
19 20 21 22 23 24 26 31 32 34 35 

36 39 40 41 
17 19 21 24 32 34 35 36    

Pigs27 (0) 
Sim. Time [ns] 0 : 7.2 7.2 : 10    

Representation 
19 20 21 22 23 24 26 31 32 34 35 

36 39 40 41 
17 18 19 20 21 32 34 35 36 

39 40 41 
   

Pigs27_0 (0) 
Sim. Time [ns] 0 : 2.3 2.3 : 3.7    
Representation 34 35 36 39 40 41 39 40 41 (chain B)    

Pigs27_25 (0) 
Sim. Time [ns] 0 : 1.5     
Representation 17 18 19 20 34 35 36 39 40 41     

Pigs27_25FC (0) 
Sim. Time [ns] 0 : 0.8     
Representation 34 35 36 39 40 41     

Pigs27_11 (2,1,1) 
Sim. Time [ns] 0 : 2.8 2.8 : 5.8 5.8 : 6.6   

Representation 
17 18 19 20 21 32 34 35 36 39 40 

41 
34 35 36 39 40 41 34 36   
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Pigs27_11m (0) 
Sim. Time [ns] 0 : 3     
Representation 17 18 19 20 34 35 36 39 40 41     

Pigs27_11m_25 (0) 
Sim. Time [ns] 0 : 0.8 0.8 : 3.1    
Representation 17 18 19 20 34 35 36 39 40 41 39 40 41 (chain B)    

Pigs27_11m_13 (0) 
Sim. Time [ns] 0 : 0.8     
Representation 34 35 36 39 40 41     

Pigs27_11m_fC (0) 
Sim. Time [ns] 0 : 1.5 1.5 : 3.2    
Representation 34 35 36 39 40 41 39 40 41    

Conventional sampling 
Gromacs [ns] 60     
Gromacs* [ns] 60     
Gromacs0 [ns] 58     

Gromacs21 [ns] 58     

Table S2: Representations and time extents of the simulations. We list the ψ angles of the residues that were used as 

representations of the system in a specific time interval during a given PIGS run. Residues are identified by their position along 

the sequence of the Aβ42 monomer. For example, annotation ‘17 18’ means that the ψ angles of LEU17 and VAL18 of chain A 

were used for the specified PIGS run and time window. The latter refers to the sampling time per copy. In addition, next to the 

name of a PIGS run, we report an annotation of the type (N,X1,..,XN), where N indicates the number of manual reseedings that 

we performed during the relevant PIGS simulation and Xi informs on the number of independent replicas that were used for 

the manual reseeding i. For completeness, we also provide the simulation time of the conventional sampling runs at the end 

of the list where no representation was used. In this case, we always used 16 replicas per simulation. The simulations that 

form the “first half” of the data set are highlighted in blue. 

S1.3 Analysis 

S1.3.1 Preamble 

The data set we analyze is formed by many trajectories of variable length, ranging from 0.8 to 60 ns. A natural 

framework for treating ensembles of trajectories is that of Markov state models (MSMs),31 the popularity of which 

has been growing considerably in the community in recent years.32, 33 In theory, MSMs allow the computation of 

stationary distributions and implied timescales from ensembles of even very short trajectories by discretization 

(coarse-graining). The resultant network is able to describe a memoryless (Markovian) evolution in this space. 

Rather than attempting to achieve global equilibrium by means of few, extremely long trajectories, the fulfillment 

of local equilibrium becomes the convergence requirement for trajectory ensembles.32, 34, 35, 36 However, MSMs 

have several pitfalls. For example, the approach requires discretization, and the usual workflow is a two-step 

process. First, molecular conformations are grouped into clusters at a fine structural resolution, followed by 

lumping states together. The second step often relies on spectral clustering algorithms and aims for a model with 

comparatively few states that are human-comprehensible. The level of scrutiny with regards to the first step is 

often unsatisfactory, however. The extent to which a memoryless stochastic process in a discrete space can 

correctly describe and interpret MD simulations is a separate issue. Few a posteriori Markovianity tests have been 

developed, but generally speaking Markovianity is more an assumption than a fully testable hypothesis for the 

analysis of MD simulations. Efforts to improve the suitability of the modeling are directed towards the 

optimization of the clustering parameters and the usage of larger lag times.32, 37 
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Transition path theory (TPT) builds on the framework of MSMs to return fluxes of probabilities between states, 

which can be used to compute kinetic rate constants and to extract representative transition pathways in order 

to gain mechanistic insights into molecular processes.38 Two practically distinct but formally equivalent 

approaches have been developed, one that relies on rate matrices39 and another that directly uses transition 

matrices, which we turn to.40 Transition matrices are more straightforward to extract from a raw data set and 

preferred unless there are reasons preventing a clean definition of the connectivity between states, e.g., in 

generalized ensemble simulations. The accurate inference of transition counts at different lag times from a 

heterogeneous set of PIGS and conventional simulations was implemented in the latest version of CAMPARI, 

which is freely available upon request. We linked the routines EB13 and MA48 of the linear algebra library HSL 

(HSL. A collection of Fortran codes for large scale scientific computation. http://www.hsl.rl.ac.uk/), which offers 

sparse matrix support, to CAMPARI in order to perform the spectral decomposition of the transition matrices and 

to solve the linear system in eq. S2 below. Users will have to obtain a copy of the HSL library independently. Other 

analyses were scripted in R or performed as built-in features within CAMPARI, e.g., DSSP analysis,41 principal 

component analysis,42 cut-based free energy profiles,43 etc. 

S1.3.2 Clustering 

As expressed above, the MSM framework mandates the definition of states, viz. groups of similar snapshots. To 

this aim, we used a tree-based clustering algorithm44 implemented in CAMPARI, which produces clusters that are 

free of overlap and track local sampling density well. We represented molecular conformations by a set of 161 

interatomic distances (D-RMSD), which are listed in Table S3 together with other clustering parameters. This 

choice provides an important advantage: it is not obviously correlated with the PIGS representations (dihedral 

angles). As a consequence, diversity in the clustering is not a direct consequence of PIGS. Furthermore, interatomic 

distances were also chosen in the study of Han and Schulten,4 thus enabling comparison to their results. As is 

evident from Table S3, the set of interatomic distances captures not only the A-B interface but all interfaces (inter- 

and intramolecular ones), which provides information on the stability of the entire pentamer. 

Region of the 
protofibril 

Interfaces between adjacent chains (Cα to 
Cα at: A & B, B & C, C & D, D & E) 

Adjacent residues 
(Cα to Cα intramol.) 

Opposite residues (Cβ to Cβ or Cα to Cβ for  
G25-I32, intramolecular) 

Involved atoms 
V18,F19,F20,A21,E22,D23,V24,G25, 
S26,N27,L28,G29,A30,I31,I32,G33, 
L34,M35,V36,G37,G38,V39,V40,I41 

F19-A21-A23-D23-
G25-I32-L34-V36-

G38-V40 
F19–V40, A21-V36, D23-L34, G25-I32 

Clustering parameters 
Resolution at 

root 
Resolution at leaves [Å] Number of levels 

Clusters (half data set 
~2.6 million snapshots) 

Clusters (full data set 
~5.2 million snapshots) 

8.0 1.0 15 2809 5655 
7.9 0.9 15 4525 8654 
7.8 0.8 15 7601 14119 
7.7 0.7 15 13989 24404 

Table S3: Definition of the interatomic distances used for the structural grouping, clustering parameters, and associated 

number of clusters. For the definition of the two data sets, please refer to Section S1.3 and Tables S1 and S2. 

The selection of a set of degrees of freedom to group a set of snapshots into states is a fundamental but somewhat 

arbitrary choice that can contribute dramatically to the accuracy of any subsequent analysis.44, 45 To dispel some 

of the concerns in this regard, Fig. S5 illustrates that the chosen metric partitions the data meaningfully also with 

respect to another metric, viz., positional root mean square deviation (RMSD) with alignment based on the N and 
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O backbone atoms of all the Aβ42 residues from V18 to I41. Specifically, the D-RMSD-derived clusters retain 

structural homogeneity and tight radii also in terms of positional RMSD. 

S1.3.3 Markov state models (MSMs) 

For each of the different clustering resolutions listed in Table S3, we calculated the associated row-normalized 

transition matrix T, the element of which is defined as 
1

( ) ( ) / ( )
N

ij ij ij
j

T c cτ τ τ
=

= ∑  where ijc is the number of 

transitions from state i to state j at lag-time τ, and N is the number of clusters. Transitions were counted in a way 

that accounts for all connectivity changes introduced by the PIGS protocol and the manual changes summarized 

in Table S2. The element ijT  of the transition matrix expresses the conditional probability of jumping from state i 

to state j within a time-interval equal to the lag-time τ given that the system is initially in state i. The first left-

eigenvector of T, which corresponds to the eigenvalue 1, informs on the steady-state probability iπ  of each state, 

while the other eigenvectors contain information about the states involved in structural transitions (modes), the 

implied timescales of which can be computed as:  

 ( ) / ln ( )i it τ τ λ τ= −   (S1) 

In eq. S1, iλ  is the ith eigenvalue that corresponds to the (i-1)th slowest transition, where we assume that the 

eigenvalues have been sorted in decreasing order. It is common to impose microscopic reversibility on the 

transition network, i.e., i ij j jiT Tπ π= . Along with efforts to estimate statistical errors associated with predictions 

obtained from a particular MSM, advanced methods to impose this detailed balance condition have been 

developed.32, 46 Here, we generally followed a simple protocol of symmetrizing the transition counts with one 

exception as noted in the next paragraph. For lag times larger than the saving frequency, it is possible to either 

extract multiple independent but correlated trajectories or to use the sliding window method, which simply adds 

all the individual count matrices to construct the maximum likelihood estimate of the transition matrix.  

As a way to assess the appropriateness of MSMs, it is customary to look at the trends of the slowest implied 

timescales with lag time. A plateau with increasing lag time is a necessary but not sufficient condition for the 

network to be Markovian, i.e., to fulfill ( ) ( )kT k Tτ τ= . These analyses therefore allow making informed choices 

of both the lag time and the clustering resolution on which to perform the flux analysis and the extraction of the 

transition pathways. Fig. S6 shows the trends of the four slowest implied timescales for the MSMs at the four 

different clustering resolutions (Table S3). It is apparent that: i) the values plateau somewhat at increasing lag 

time in a way that does not depend strongly on clustering resolution; ii) the sliding-window result agrees well with 

the average of the results derived from individual trajectories at fixed lag time. Based on these data, we selected 

a resolution of 0.7 Å and a lag-time of 200 ps. To see whether a detailed balance-constrained maximum likelihood 

estimate of the transition matrix46 would give results that are substantially different, we repeated the analysis in 

Fig. S6 for the sliding window case. Fig. S7 implies that the kinetic information in the networks is very similar for 

both symmetrization approaches, and we thus restricted all subsequent analysis to the much simpler one.  

Finally, as a test of robustness, Fig. S8 provides the same results as Fig. S6 when considering only the first half of 

our data set (see Section S1.2.2 and Table S1). From Fig. S8, we would have decided to proceed with a resolution 
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of 0.8 Å and a lag-time of 200 ps for the extraction of the kinetic rates and transition paths, which is very similar 

to the choices based on Fig. S6. Indeed, the implied timescales are similar (within a factor of 2-3). 

S1.3.4 Transition path theory (TPT) 

As already stated, TPT connects naturally with MSMs by means of the underlying transition matrix. TPT allows one 

to extract kinetic and structural pathway information with the help of committor probabilities.40 Pathways are 

defined by providing two sets of states as input, for example a disordered (D) and an ordered (O) set with the 

remainder of the states being part of the set of possible intermediates (I). The forward time (+) committor 

probability of any putative intermediate state i, ,
ifoldp+  is defined as the probability that, by evolving a random 

walker according to T from state i, the ordered set is reached before the disordered one. Similarly, the backward 

(-) committor probability, ,
ifoldp−  is formally the probability that a walker that reaches state i was last in the 

disordered state rather than in the ordered one. The values of 
ifoldp+  can be computed by solving the following 

set of equations: 

  for 
i jfold ij fold ij

j I j O

p T p T i I+ +

∈ ∈

− + = − ∈∑ ∑   (S2) 

Because we impose detailed balance (see S1.3.3), the values for
ifoldp−  are simply equal to 1

ifoldp+− . Once 

probabilities and committors were calculated for all states, we obtained the effective flux between states i and j 

as 
i jij i fold ij foldf p T pπ − += , the reactive flux as max[0, ]ij ij jif f f+ = − , and finally the total flux as: 

ji ij fold
i D j D

F T pπ +

∈ ∉

=∑∑       (S3) 

From the total flux, the kinetic rate constant can be derived: 
1

/ ( ).
i

N

DO i fold
i

k F pτ π −

=

= ∑  If detailed balance holds, 

it is easy to see that transitions with nonzero reactive flux imply an increase in foldp+ : 

      (S4) 

 

S1.3.5 Selection of reference states 

The extraction of kinetic rate constants and transition pathways requires the definition of two sets of states, here 

an ordered (or locked) set and a disordered (or docked) set. As long as there is a separation of timescales for the 

transition versus local equilibration times, the precise definitions of sets in terms of clusters (states) have little 

impact on the final result. Here, we wish to characterize the locking step during elongation of the Aβ42 protofibril 

model by Lührs et al.1 We defined the ordered set of states by identifying conformations that are an appropriate 

representation of the “relaxed” reference model under simulation conditions. The disordered set was meant to 

be as diversified and kinetically far away as possible from the starting structure. 

Because we wanted to be able to estimate robustness by rerunning the analysis on the first half of the data alone, 

these sets were defined without consideration of the latter half of the data (see S1.2). We analyzed the 

, ,imax[0, ] max[0, ]ij ij ji fold j foldf f f p p+ + += − = −
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distribution of D-RMSD distances to the centroid representative of the cluster that contained the initial structure. 

This analysis is based on a clustering resolution of 0.8 Å (see S1.3.2 and Table S3). Fig. S21A shows the distances 

to the centroids of the clusters that were populated during PigsA, PigsB, and PigsC (Table S1). The associated 

histogram in Fig. S21B was used to set an upper threshold distance selecting a subset of possible candidates for 

the ordered set. Similarly, for the disordered set, we looked at the distances to the same centroid of all the clusters 

populated in all the other PIGS simulations of the first half of the data set, and this is reported in Figs. S21C-D. The 

pool of candidates falling above a lower threshold distance in this case came from three specific sets of PIGS runs, 

i.e., Pigs0, Pigs21, and Pigs27, all including their respective derivatives (see Table S1). Candidates from these 3 

runs were ultimately used to identify D2, D1, and D3, respectively (see main text and Fig. S11). To select a smaller 

number of states from the pool of candidates for the ordered set, we focused on the statistical weights of the 

candidate states and on the degree of homogeneity in their sampling extent with respect to runs PigsA, PigsB, and 

PigsC. Fig. S22 reports discovery times and sampling weights for the set of candidate states, and the four states 

depicted by their centroids in Fig. S10 were selected based on the data in Fig. S22. These four selected centroids 

also belong to four distinct clusters at the next coarser resolution for clustering, viz. 0.9 Å. In all cases, parent 

clusters in other groupings, in particular in the final one at 0.7 Å on the full data set, were identified as follows: 

we extracted the centroid snapshots of D1-D3 and the four members of the ordered set identified by the original 

grouping and simply found the corresponding clusters they belong to in the grouping in question. 

S1.3.6 Flux decomposition 

The net reactive probability flux from the disordered (D) to the ordered state (O) is known (S1.3.4) and can be 

iteratively decomposed into pathways. Random productive trajectories are those that start in D and reach O 

before crossing D again. Unfortunately, if the set of intermediates is finite, the number of possible productive 

trajectories will grow uncontrollably. It is therefore common to lump productive trajectories by the “reactive 

portion” of these trajectories, i.e., by the sequences of states for which the committor probabilities,
,i pathfoldp+ , 

increase monotonously. Then, the decomposition problem can be rephrased as a problem of finding shortest 

paths in a flux network where transitions between nodes i and j are allowed if 
j ifold foldp p+ +> . The length of the 

corresponding edge (distance) is given by 
1

ln /
in

ij ik ij
k

d f f+ +

=

  
=   

  
∑  39. Here, ni is the number of states connected 

to node i. Shortest paths can be found conveniently with the help of Dijkstra’s algorithm.47 

The carried flux associated with any given pathway can be computed rigorously as 

,.., ,.., 0 1 10

1
1

1

( / ( )
ik

i i i k k kk L

n
L

path i i k i i i j
j

f f f f
+

+ + − + +
=

=

= Π ∑ , where i0 belongs to D and L is the number of states that compose the 

pathway. In theory, it is possible to enumerate all possible pathways by subtracting their carried flux from any 

edge contributing to the pathway until all edges are exhausted. Unfortunately, this carried flux is generally several 

orders of magnitude smaller than the smallest (bottleneck) net flux of any edge that is on-pathway. This is because 

even in a network of just moderate complexity the net reactive flux of an edge, ijf + , results from contributions of 

very many distinct but often closely related pathways. This renders the direct decomposition approach 

computationally infeasible. Therefore, instead of removing the carried flux from all the edges of the strongest 

pathway, we subtracted a fraction of the net flux of the bottleneck edge (25% for the network relevant to the 
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sliding window case, which is the only one we used for the pathway decomposition) at each step of the iterative 

decomposition, which was terminated when 80% of the total flux was collected. This procedure differs from the 

literature precedent4 in that only a fraction of the bottleneck net flux is subtracted rather than all of it. It allows 

us to avoid an oversimplification of the pathway picture that could occur if the same bottleneck is shared by 

several heterogeneous pathways. 
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S2 Supporting Figures 

 

Figure S1: Two-dimensional histograms (log-scale) of mean segment distances and the molecular center of mass-distance 

for the A-B interface. For the 6 segments indicated in Fig. 1D of the main text, we show two-dimensional histograms of the 

mean segment distance and the center of mass distance of chains A and B. The color scale differs per panel (legend is 

embedded). The different segments are indicated in the y-axis labels and proceed from N- to C-terminus in reading direction. 
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Integrals (1D histograms) are shown for both axes with a linear scale at the top and right of each panel. Here and wherever 

applicable, the statistical weight of each snapshot is derived from the steady state of the final network model (see 

“Construction of Markov model” in the main text and S1.3.2-S1.3.3 above).  
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Figure S2: Time evolution of the reseeding rate for selected PIGS simulations. In each panel, the gray envelope is defined by 

the maximum and minimum number of reseedings per replica at any given time, and the dashed black line within the envelope 

denotes the average number of reseedings per replica. Vertical dashed lines mark the time points when a change in 

representation (green), a manual reseeding from specific structures (blue), or both occurred (see Table S2). 
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Figure S3: Visual comparison of NMR structure1 and relaxed MD structure. Chains are shown as cartoon representations 

with the N-termini missing in 2BEG being truncated. Coloring is by chain and the same as in Fig. 1B in the main text (chain A 

is blue). The MD centroid is the central snapshot extracted from a large cluster populated by both GROMACS and GROMACS* 

simulations (see Table S1). In order to identify it, we followed a protocol similar to that in Figs. S21-S22. A-B. Views of the odd 

end (β1 at the bottom). Note the increase in twist of the parallel β-sheet assembly. C-D. Views of the loop region (β1 is left). 

The intramolecular strand-to-strand distance widens during MD suggesting the influx of water (compare Fig. 4 in the main 

text). This is accompanied by a loss of regularity. E-F. Views of the C-terminal end (β1 is right). The short sheet formed by the 

CT segments is bent in MD relative to β2 while it is straight in 2BEG. This part is of course heavily occluded from access by the 

N-termini. Note the increase in stagger (see Fig. S20 below). All molecular graphics here and in subsequent figures were 

rendered with VMD48 and Tachyon (http://jedi.ks.uiuc.edu/~johns/tachyon/). 

  



S-17 
 

Figure S4: Secondary structure content for N-terminal residues by DSSP.41 For each residue from A2 to Q15 of each chain, 

we plot secondary structure assignments as stacked bars reflecting per-residue probabilities, which were determined by 

standard DSSP analysis. The most probable assignment is almost always either bend, turn, or no assignment (the latter 

corresponding to whatever is missing from the total bar height toward a value of 1.0). Canonical secondary structure occurs 

seldom and is distributed randomly across sequence and chains. 
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Figure S5: Cross-check of distance metric for clustering against coordinate RMSD (see S1.3.2). There are four main panels 

corresponding to different size threshold for clusters calculated using a D-RMSD metric. Each panel has three subpanels as 

follows. The upper left plots show the distribution of the distances of snapshots to the relevant centroids of the clusters they 

belong to. Here, as in all other plots, the grouping is made according to the D-RMSD metric but the distances are positional 

RMSD values after pairwise alignment, thus informing on the distribution of RMSD values within the clusters. The upper right 

panels show the distributions of cluster radii in the RMSD metric. Cluster radius is defined as the mean snapshot-to-centroid 

distance in a cluster (singles excluded). Lastly, the bottom panels provide individual values for the means and standard 

deviations of snapshot-to-centroid distances within the largest clusters plotted until a cluster size of 100. Colors alternate for 

improved readability. The means are the aforementioned cluster radii. A-D. Results for clustering size thresholds of 1.0Å, 0.9Å, 

0.8Å, and 0.7Å, respectively. Source data are the first half only (blue in Table S1). 
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Figure S6: Trends of the four slowest implied timescales as a function of lag time at different clustering resolutions for the 

whole data set. Dots mark the values of the timescales derived from the independent but correlated trajectories that can be 

extracted at any given lag time, which are as many as the multiplicity of the lag time with respect to the saving frequency. 

Colors indicate the different modes (red, blue, cyan and yellow). Solid lines trace the average values of these distributions. 

Dashed lines connect the results from the sliding window approach. Lines are purely meant as a guide to the eye. Panels A-D 

show the results for clustering resolutions of 1.0Å, 0.9Å, 0.8Å, and 0.7Å, respectively. 
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Figure S7: Trends of the four slowest implied timescales as a function of lag time at different clustering resolutions with an 

alternative symmetrization of the count matrix. This figure is identical to Fig. S6 except that count matrices were symmetrized 

by the procedure introduced in Bowman et al.,46 and that only the results for the sliding window case are shown. This 

symmetrization attempts to maximize the likelihood of observing the count matrix given an estimate of the transition matrix 

under the constraint of obeying detailed balance. This is itself an iterative procedure with two disadvantages: 1) convergence 

can be slow which was inconvenient for the large number of networks we constructed; 2) the definition of likelihood implies 

Markovianity such that the optimality is not easy to assert in general. Importantly, the results for the sliding window case are 

fundamentally similar to those in Fig. S6. The only noteworthy differences are more curvature changes for coarse resolutions 

and a small general increase in timescales (well within a factor of 2). In consequence, we utilized the simple symmetrization 

procedure throughout.  
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Figure S8: Trends of the four slowest implied timescales as a function of lag time at different clustering resolutions for the 

first half of the data set. This figure is identical to Fig. S6 except that only the first half of the data are considered (see S1.2). 
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Figure S9: Cluster overlap between sets of runs. For the same four resolutions displayed in Figs. S6-S8, we show the mutual 

similarity of runs by two cluster overlap measures. The upper left half matrix counts the number of clusters containing 

snapshots from both runs in question and divides this number by the total number of clusters. The lower right half matrix 

instead sums up the total Markov model weight of all clusters containing snapshots from both runs in question. The labels on 

the axes are short-hand notations of the terminology in Table S1: “g” stands for “Gromacs”, “pa” for “PigsA”, “pb*” for PigsB*”, 

“r21” for “Pigs21”, and so on. For the analysis, each category includes all its children as listed in Table S1. The color legend in 

the middle applies to all panels. A-D. Data for resolutions of 1.0Å, 0.9Å, 0.8Å, and 0.7Å, respectively. In general, overlap 

decreases as the number of clusters increases (finer resolution), which is expected. The mutual overlap of all the PIGS runs 

starting directly from the NMR structure is apparent. The conventional (non-PIGS) simulations agree strongly with their 

respective starting structures despite being longer in simulation time (e.g., Gromacs21 and Pigs21, see Table S2), indicating 

that PIGS is absolutely essential for diversification on the ns timescale. 
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Figure S10: Centroids of the four clusters that constitute the ordered (locked) set. Please refer to section S1.3.5 for 

information on how these were identified. Backbone conformations are shown as Cartoons with the same chain coloring used 

throughout. Sidechains of hydrophobic residues are shown as sticks. 
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Figure S11: Centroids of the three clusters that made up the disordered set, D1-D3. Please refer to section S1.3.5 for 

information on how these were identified. Backbone conformations are shown as Cartoons with the same chain coloring used 

throughout. Sidechains of hydrophobic residues are shown as sticks. 
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Figure S12: Cut-based free energy profile based on foldp+
 values for D1 with structural annotation. Briefly, the calculated 

forward committor probabilities (see S1.3.4) were sorted. For each cluster, its 
ifoldp +

 value defines a cutting surface in the 

network with two states, one with higher and one with lower committor probabilities. Direct transitions crossing the respective 

surface for each cluster are counted. These are the ZAB values plotted logarithmically on the y-axis as pseudo free energies 

(black curve). The x-axis position of a cluster corresponds to the cumulative steady state probability of itself and all clusters 

with lower committor probabilities.43 The profile is annotated fourfold. First, on-pathway intermediates for the locking of D1 

are highlighted in green on the black curve. Second, purple labels indicate the positions of the other two docked states, D2 

and D3. These are obviously not intermediates as they are off-pathway. Third, the blue line plots the actual committor 

probabilities (right y-axis). Fourth, the color map on top reports in-registry distances for all intermolecular interfaces (text 

legend on the left, color legend on the right). In addition, selected intramolecular distances for chain A are shown as well 

(bottom of the color map, where the set of distances is the same as in Table S3 but for chain A alone). This figure is 

complementary to Fig. 7 in the main text because: i) the whole data set is represented; ii) the scaling on the x-axis is by 

population and not by committor probability increment. This implies that the x-axis here is not a pathway variable of any kind. 
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Figure S13: Structural progression of the single strongest locking pathway for D1. This figure is very similar to Fig. 7 in the 

main text (please refer to the caption of Fig. 7 for details). The only difference is that here only those clusters contributing to 

the strongest of all locking pathways determined by pathway decomposition (see S1.3.6) are shown. As a result, the spacing 

in committor probability is often large. As these values are chosen as the left boundary for plotting, the interval from 0.96 to 

1.0 corresponds to the last on-pathway intermediate preceding the locked state. For clarity, the locked state itself is added as 

a bar for committor probabilities beyond 1.0 (there is no significance to its width). 
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Figure S14: Visual illustration of a laterally bound and β-hairpin-containing docked conformer related to D2. Backbone 

conformations are shown as cartoons with the same chain coloring used throughout. Sidechains of hydrophobic residues are 

shown as sticks. This conformation was extracted from the simulation labeled Pigs0_29_27L in Table S2. It is kinetically close 

to D2 ( foldp+
 = 0.12 and a mean-first passage time to D2 that is only 13% of that of the locked state), i.e., the major barrier is 

between D2 and the locked state. 
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Figure S15: Cut-based free energy profile based on foldp+
 values for D2 with structural annotation. This figure is identical 

to Fig. S12 except that data for D2 are shown. Therefore, it is complementary to Fig. 8 in the main text. 
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Figure S16: Structural progression of locking pathway for D3. This figure is identical to Fig. 7 in the main text except that 

data for D3 are shown. Please refer to the caption of Fig. 7 for plotting details. 
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Figure S17: Cut-based free energy profile based on foldp+
 values for D3 with structural annotation. This figure is identical 

to Fig. S12 except that data for D3 are shown. It is thus complementary to Fig. S16. 
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Figure S18: Committor probabilities annotated with the formation of β-hydrogen bonds and intermolecular contacts for 

D1-D3. We plot the number of hydrogen bonds and the number of intermolecular contacts between chain A and the rest of 

the assembly as a function of the (+) committor probabilities, pfold (see S1.3.4-S1.3.6), for different locking pathways. Vertical 

segments at the bottom highlight the pfold values of the clusters that are actually on this locking pathway (similar to Figs. 7, 8, 

and S16). Areas with low bar density are likely barrier regions. All plotted quantities refer to the representative snapshot 

(centroid) of the cluster in question, which is taken as a consensus representation. Dashed and dotted horizontal lines mark 

the number of (native) hydrogen bonds (light blue) and intermolecular contacts (dark blue) for the initial NMR structure, 

respectively. Hydrogen bonds were determined using standard DSSP41 analysis with the default energy threshold 

of -0.5kcal/mol and keeping only the strongest one per donor or acceptor. They can be native or nonnative but exclude the N-

termini (residues 1 to 16). An intermolecular contact was counted every time the shortest distance from any atom of a residue 

of chain A to an atom of any other chain was smaller than 5.0Å, again with the exclusion of the N-terminal residues. A. Trends 

of native hydrogen bonds and intermolecular contacts for the pathways starting in the disordered state D1. B. Same as A for 

D2. C. Same as A for D3. Three important observations emerge. First, the number of hydrogen bonds can be very low even for 

large values of pfold (e.g., only 4 are formed for pfold values between 0.7 and 0.8 in B). Second, in areas of pfold where significant 

transitions occur (particularly visible in A and C), the complete “zipping up” of the β-sheets appears to occur at larger values 

of pfold relative to contact formation (they should be superimposed if β-hydrogen bonds drive contact formation). Third, long 

stretches of pfold values occur that seem to show significant changes only in contacts but not in β-hydrogen bonds (e.g., 0.0-

0.5 in A, 0.0-0.7 in B). It is a caveat that important changes that approximately preserve the total number reported are masked 

in this analysis (see C). This issue is more pronounced for contacts than for hydrogen bonds (since the absolute numbers are 

larger). 
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Figure S19: Cumulative distribution functions for salt bridge distances at all interfaces. We recorded the distances between 

K28 Nζ and D23 Cγ atoms both intramolecularly and intermolecularly, and the corresponding MSM-weighted cumulative 

distribution functions are plotted. Note the variable scale on the x-axes. 
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Figure S20: Distribution of the stagger of the β1- and β2-sheets along the protofibril axis. By defining the protofibril axis at 

each time point as the vector joining the center of geometry of chain C with the center of geometry of chain D, we projected 

the centers of geometry of the β1 and β2 sheets onto the protofibril axis and calculated the absolute difference in Å between 

the two. In the Cartoon, the centers of geometry are labeled “CG β1” and “CG β2,” and the respective projections onto the 

protofibril axis are “pCG β1” and “pCG β2."  A positive value in the histogram is indicative of a stagger of the same type as the 

one in the reference NMR model (PDB 2BEG).1 The center of geometry of β1 was simply determined as the average value of 

the Cα coordinates of residues A21 and E22 of chains B to E, while the center of geometry of β2 was given by the average Cα 

coordinates of L34 and M35 of the same chains. The average over all four points for a single chain gave rise to the centers of 

geometry used to define the protofibril axis (based on chains C and D). The increase in average stagger is due to the 

deformation of the less twisted NMR structure upon relaxation in the simulations (compare Figs. S3E and S3F). 
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Figure S21: Selection of candidates for the ordered and disordered sets by distance thresholds. A. Clusters sampled in runs 

PigsA, PigsB, and PigsC are identified by their centroids and ordered along the x-axis according to the first time of discovery. 

The color code identifies the run encountering a given cluster first. The D-RMSD distance between the centroid of the cluster 

that contains the starting structure and the various clusters is reported on the y-axis. The upper threshold distance used to 

obtain a pool of plausible candidates for the ordered set is shown as a dashed line. B. Histogram of the distances in A used to 

justify the choice of threshold. C. For derived PIGS runs (individual runs as in Table S1 are differentiated by color), we plot the 

same centroid-to-centroid distance as in A as a function of cumulative time. Cumulative time means that within each run, 

progression is with sampling time per copy, but that runs are simply concatenated. The lower threshold distance used to obtain 

a pool of plausible candidates for the disordered set is shown as a dashed line. D. The same as B but for the data in C. 
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Figure S22: Final selection of the states that compose the ordered set. A. Time trace of occurrence of the snapshots that 

constitute the candidate clusters containing snapshots from all of the 3 initial PIGS runs considered, i.e., PigsA, PigsB, and 

PigsC. Time refers to the sampling time per copy B. Statistical weight of the clusters in A (widths of the bars) resolved by 

homogeneity across runs (the height of the colored rectangles is proportional to the number of snapshots contributed by a 

specific PIGS run to a cluster). Clusters we selected for the ordered set are highlighted with “+” signs on top of the bars. 
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