
1 

SUPPLEMENTARY INFORMATION FOR: 

On the specificity of the recognition of m6A-RNA by 

YTH reader domains 

Julian Widmer, Andreas Vitalis,∗ and Amedeo Caflisch 

Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland 

E-mail: a.vitalis@bioc.uzh.ch  



2 

Supplementary Methods 

Parameterization of m6A 

As a nonstandard nucleobase, m6A is not part of the “core” set of force field (FF) parameters in 
either CHARMM or Amber. This is important because parameters of standard entities often have 
unique requirements towards consistency (analogous entities should have similar parameters), 
and are refined over many iteration cycles. When amending a FF, it is standard practice to follow 
its basic parameterization paradigm as much as possible, but the level of refinement and applied 
tweaks will inevitably have to deviate. Here, we resorted to two such parameterizations found in 
the literature. Since m6A differs only marginally from adenine, it is logical to expect consistency 
with adenine parameters as the main guiding principle. While these are shared for Lennard-Jones 
and bonded parameters in Amber,1 this does not hold for partial charges. In CHARMM, it is worth 
noting that the parameterization of m6A in principle affects all parameters of the base (but not of 
the sugar or phosphate, where they are again shared, as expected).2 

How similar are the two sets of partial charges to each other and to the ones in their parent force 
fields? Across the shared scaffold of the base (13 atoms), we find unexpected differences: for 
example, the Amber charges for the unmodified base are closer to those of CHARMM (RMSD: 
0.12, Pearson: 0.97) than to those of m6A in Amber (RMSD: 0.15, Pearson: 0.96). The total 
polarization of the atoms C8 and H8 by the two surrounding nitrogen atoms, N7 and N9, is 
strongest in CHARMM m6A (sum: +0.51) and weakest in Amber m6A (sum: +0.26), with the values 
for the unmodified base in between. It is thus questionable how much the heritage of the FF is 
actually visible in these extensions, and how much volatility is introduced by the mapping of QM 
properties to fixed, partial charges,3 especially in delocalized ring systems. In other words, it is 
possibly more appropriate to refer to any FF that has been amended in this way as a “hybrid FF.”  

Details of progress index-guided sampling (PIGS) 

All details on how PIGS operates can be found in the original publication,4 but, for added clarity, 
we repeat some salient points here. As an adaptive sampling technique, PIGS propagates multiple 
replicas under identical conditions: the ambient conditions (temperature, density), the system 
composition, the potential energy function, and all other simulations settings are identical across 
replicas. At a fixed interval, some copies might be terminated, and their coordinates might be 
replaced with those of another replica. This termination/duplication scheme is per se lossy and 
has no benefit over keeping the replicas independent of one another unless the decision to 
terminate a replica is done in a targeted manner. To make the algorithm both scalable and 
compatible with high-performance computing (HPC) settings, the number of total copies is fixed 
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and the cost of evaluating the reseeding criterion (see next paragraph) is kept constant. The data 
produced by a PIGS run can be viewed as an ensemble of short trajectories with a strict, tree-like 
topology when looking forward in time. Replicas can only be terminated (dead branch) or grow 
(spawning a new branch), but two branches can never coalesce or swap. This means that every 
point in time can be uniquely tracked back to a specific starting point (and replica), which implies 
that there is a geometrically continuous path in time from the very beginning for all simulation 
snapshots. This last point is an important consideration for the construction of transition state 
networks. 

As mentioned in the main text, PIGS uses a particular feature space to define a (Euclidean) 
measure of distance within. Throughout any stretch between two reseeding intervals (here, 
100ps), all replicas (here, 64) record their feature data at a finer interval (here, 1 ps, accumulating 
64000 data points per stretch). Since we rely on a GROMACS-CAMPARI hybrid approach for PIGS,5 
this entails intermittently writing compressed trajectories at 1 ps time resolution and analyzing 
them through individual invocations of CAMPARI: using the aforementioned measure of distance, 
the progress index algorithm6 determines an ordering of all the 64000 snapshots in a way that 
makes self-similar snapshots appear near each other. These data are used to rank the replicas’ 
snapshots populated at the end of the reseeding stretch in question by redundancy, from low to 
high. This ranking is composite and uses 3 separate criteria: the distance from any other terminal 
snapshot (larger is better), the position in the progress index (larger is better), and the 
(approximate) minimum geometric distance to any snapshot with smaller progress index value 
(larger is better). All 3 criteria are engineered to heuristically identify terminal snapshots that are 
maximally different from the 63 others, i.e., to penalize redundancy. A fixed number of replicas 
(here, 32) with the best ranks are deemed “protected.” They are used to stochastically reseed 
(i.e., terminate and replace) replicas with lower ranks (more likely for higher rank differential). 
Because any reseeding is per se lossy, this strategy becomes problematic once there is no 
redundancy left. To avoid negative consequences from this, a replica is always protected, 
irrespective of rank, if its snapshots form a relatively compact group in the progress index. This is 
typically the state reached by a PIGS simulation toward the end (compare Fig. S6 below), where 
the reseeding rate has dropped and the uninterrupted trajectory segments can become very long, 
which is good for Markov state model (MSM) construction. 

Transition path theory (TPT) 

To appreciate the nature of the challenge we try to address using MSMs and TPT here, it is 
illustrative to start with a Kramers view.7 Suppose that there are two main states with a large 
barrier separating them so that there is a separation of time scales for relaxation within a state 
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relative to crossing the barrier. This system is of interest because a similar two-state assumption 
has to be imposed onto many experimental results, such as binding assays. The crossing rate 
depends on height and other factors but is computable meaningfully only if the underlying system 
evolves stochastically, with diffusion-like motion (fluctuation-dissipation).8 Complex dynamical 
systems at the molecular scale, like biopolymers, often appear to evolve stochastically, and these 
dynamics can often be approximated in a memoryless (overdamped) limit. In a space of discrete 
rather than continuous states, MSMs are the canonical way of modeling this limit.9 

However, a typical MSM, which is defined by its transition matrix, has many more than two states. 
If we assume that we know which states to lump into the two boundary states, any MSM allows 
simulation-based predictions of both kinetics and thermodynamics: so-called random walkers10 
can be initialized in state A according to their steady-state population (equilibrium distribution), 
and one can simulate their progression through the transition state network until they reach state 
B. If the distribution of arrival times is exponential, a single-exponential rate is fittable. If it is not, 
the scenario is most likely not Kramers-like (multiple barriers, or no separation of timescales). The 
first complexity is to understand whether boundary states A and B are kinetically homogeneous. 
For example, as a thought experiment, imagine that m6A and one of the aromatic side chains of 
the cage can undergo a concerted flip. If this flip is slow but both sub-states are part of the bound 
state, an error will be introduced since two processes are integrated into one rate. For the 
random walkers, this would mean that distinct distributions of arrival times are (incorrectly) 
treated as statistically homogeneous. 

The random walkers will also sample a specific path. Outside of extremely simple MSMs, these 
paths will all be different and all individually have vanishing probability. The path probability is 
simply the joint probability, i.e., the product of the transition matrix elements that were picked. 
The paths are stochastic: they contain detours, entering and returning from dead ends, flickering 
between two adjacent states, waiting in a state, etc. Still, one might expect that there are 
subfamilies of paths that share certain properties, such as characteristic sets of states that are 
visited. For example, if the m6A binding site could be reached from two sides, one would expect 
that there are two major families of unbinding pathways, and the random walkers should reflect 
this. We attempted such an analysis, but clustering a very large number of random walker paths 
and plotting them on the network allowed no straightforward pathway delineation. 

If a state-centric view is adopted instead, we bridge over into TPT.11,12 Suppose that whenever a 
state is visited by a random walker, it is recorded whether this walker reached the target state 
before it returned to the source state or not. The fraction of walkers reaching the target first, 
relative to all walkers passing through the state, is known as the committor probability, and it can 



5 

be calculated without having to enumerate random walkers. It is, arguably, the most natural 
progress variable (or reaction coordinate)13 for the two-state reaction we are trying to describe. 
Given states B (the target), U (the source), and I (everything else), the plus or forward committor, 

iq
 , is the solution to: 

i ij j ij
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Where the Tij are the transition matrix elements. The minus (or backward committor) is the 
analogous solution to: 
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Both committor values allow ordering the states comprising I by their proximity to the boundary 
states. They are always related as 1i iq q   , but the relation is exact only if the transition matrix 
fulfills detailed balance. It is intuitive that two connected states that differ in iq

 provide 
information on which direction the target state is in. This is the logic of a flux network (eqs. 1 and 
2 in the main text), and it is illustrative to consider the detailed balance limit: 

     1 1ij ji i ij i j j ji j i i ij j if f T q q T q q T q q                 (S3) 

The second equality also follows because of detailed balance per its definition: i ij j jiT T  . The 
sign of the flux will mirror exactly the sign of the difference in committor values. Thus, the 
“productive” flux, ijf

 , considers only transitions where the net flux is positive (eq. 2 in the main 
text). 

The task of decomposing the total flux into pathways is equivalent to the task of finding high-
capacity paths in the flux network, which can be easily recast and solved as a shortest-path 
problem, here using Eppstein’s algorithm14 as implemented in CAMPARIv5 
(https://campari.sourceforge.net/V5). Even though these are no longer stochastic paths a 
random walker would take (they can only advance in terms of committor), the combinatorial 
growth of their number generally precludes even an extremely large number of paths from 
amounting to a substantial fraction of the total flux (eq. 3 in the main text). We tried this for our 
networks, but neither did the integrated flux reach reasonable values nor did the top-ranked 
paths show any particular grouping. The most common workaround to this problem stipulates 
that paths can be clustered implicitly by modifying the flux network continuously. Specifically, the 
total11 (or a significant fraction15 of the) capacity of the bottleneck transition along the pathway 
is removed, and the updated flux network is used in the next step, effectively eliminating all (or 
most) paths using this transition. This makes several assumptions, which we did not see fulfilled 
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here: that there is a clear, single bottleneck on a given path; that the bottleneck is unique to a 
family of paths, etc.  

In summary, the structure of the problem as two-state and modelled by a memoryless stochastic 
evolution remains largely an imposition, yet both impositions are somewhat inevitable. The 
Markov assumption only ever holds approximately, but more general frameworks require even 
more data, limiting the scope of reachable conclusions. Furthermore, our TPT-based analysis as 
well as other approaches16 have highlighted that the dynamical behavior of molecular systems 
often markedly deviates from models involving two clearly delineated boundary states, at least 
at the spatial and temporal resolutions we have access to here. It is, in particular, difficult to 
define a kinetically homogeneous disordered (here, unbound) state. Such homogeneity is an 
imposition and not generally an accurate reflection of the biomolecular systems under study. 
Nevertheless, by resorting to the two-state assumption, we can assure that compact results are 
produced, which are, in many cases, directly comparable to experiment. Finally, robust 
diagnostics of the quality of the model are a research field on their own: here, we employ the 
Kemény-constant, which quantifies the expected timescales of dynamics on a Markov chain,17,18 
and a straightforward variance/robustness estimation through subsampling of the count matrix. 
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Supplementary Tables 

Systems 
shared 

Clusters Frames 

4 1013 811779 

3 433 312380 

2 246 23871 

1 262 3586 

Total 1954 1151616 

Table S1. Number of clusters and snapshots (frames) shared by systems. 

 
System Clusters Total 

frames 
Clusters B Clusters U Frames B Frames  U 

AAA 1627 256K 13 253 20277 95971 

Am6AA 1460 256K 8 275 43373 61310 

GAC 1601 256K 13 279 43405 84138 

Gm6AC 1417 384K 9 245 66575 33532 

Table S2. Splits of cluster and snapshot (frame) numbers across systems. Totals (columns 2 and 3) 
are presented along with the number of clusters and snapshots (frames) defining the boundary states 
B and U for every system. 
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Parameter CHARMM36 Amber 

vdw-modifier force-switch potential-shift 

rlist 12 Å 9 Å 

rvdw 12 Å 9 Å 

rvdw-switch 10 Å n/a 

rcoulomb 12 Å 9 Å 

dispcorr no no 

thermostat coupling time 1 ps 1 ps 

box shape rhombic dodecahedron truncated octahedron 

minimum solute-to-box distance 1.2 nm 1.2 nm 

water molecules ~2700 TIP3P ~2900 OPC 

Table S3. FF-specific Gromacs run parameter and setup choices used in simulations of the 
pentanucleotide in water. Values that were shared across all MD simulations in the work can be 
found in Table S4. 

 

Parameter Value 

ensemble NVT 

thermostat Bussi-Parrinello 

cutoff-scheme Verlet 

vdwtype cut-off 

coulombtype PME 

PME order 4 

PME spacing 0.12 nm 

ewald-rtol 10-5 

geometric constraints bonds involving H 

constraint algorithm LINCS 

lincs-order 4 

Table S4. Universal Gromacs run parameter choices used in simulations of both the 
pentanucleotide in water and the complexes. 
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System Pentanucleotide in water 
(all conditions) 

Complex 
Am6AA 

Complex 
AAA 

Complex 
GAC 

Complex 
Gm6AC 

Avg. T (K) 300.0 300.3 301.7 302.1 302.1 

SD (K) 0.0 0.6 1.3 1.2 1.2 

Table S5. Average temperatures and their standard deviation (SD) across replicas for different runs. 
Because the complex simulations use PIGS, we retained energy data only for one reseeding cycle. 
The data in the table are based on a single stretch of only 100 ps (50 samples) near 50 ns simulation 
time, but for 64 replicas (6.4 ns cumulative). In contrast, the data for the pentanucleotides in water 
are based on the entire sampling of 16x200 ns, which is why the SD across the 16 replicas is tiny. 

 

Residue 

Asn363* 

Asn364* 

Leu380 

Pro381 

Val382 

Asn383 

Pro431* 

Ala432* 

Gly433* 

Met434* 

Ser435 

Ala436 

Lys437 

Met438* 

Leu439 

Table S6: Protein residues, for which φ- and ψ-angles serve to diversify the protein-RNA complex 
from its initial, bound configuration in PIGS. Residues not marked with an asterisk are included only 
from 50 ns onwards. The numbering is the same as that in PDB entry 4R3I. 
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Supplementary Figures 

 

Figure S1. Overlay of the binding pose of the modified base in several experimental holo 
structures. The structures corresponding to 4R3I (green), 6ZCN (chain B; red), 7L4X (dark grey), 
6RT6 (chains B,E; light grey), and 2MTV (model #1; cyan) were aligned and rendered (binding site 
residues as thin sticks, the modified base as thick sticks, and the backbone of 4R3I as Cartoon, 
RNA in orange/blue). The left side emphasizes the foreground (with Trp428 and the binding loop 
residues Leu430, Met434, and Leu439 labelled) while the right panel emphasizes the methylated 
base and Trp377 in the back. Except for Met434, even the side chains show little variability. 
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Figure S2. Principle component analysis based on all 31 non-redundant dihedral angles of the 
pentanucleotide in water. Data from both FFs and methylation states are included. Left. The 
fraction of variance preserved as a function of the number of retained components. Right. Color 
map of the PCA loadings for the first ten PCs. Orange lines and Greek letters mark the RNA angles 
the loadings act on. 
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Figure S3. Mutual information for the 10 non-adjacent dihedral angle pairs of the methylated 
pentanucleotide in water. Data are shown for those pairs of dihedral angles where mutual 
information differs the most between force fields. 
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Figure S4. Population of the 10 most populated clusters determined for the pentanucleotide in 
water. The clusters are based on 31 dihedral angles projected onto 10 principal components. The 
partitioning is calculated for both force fields and methylation states jointly. 
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Figure S5. Comparison of the base stacking in the methylated pentanucleotide in water for 
Amber and CHARMM force fields. A kernel density estimate of the probability density is shown. 
Each subplot represents the stacking for one nucleotide pair. 
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Figure S6. Cumulative reseedings as a function of reseeding cycles of 100 ps for each of the five 
PIGS ensembles. As diversification of the feature space proceeds, the rate drops because of the 
uniqueness override in the PIGS heuristic (see above and original publication).4 Thus, a plateauing 
of this rate is a direct indicator of diversification. 
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Figure S7. Clusters selected for additional sampling of Gm6AC. A preliminary MSM constructed 
for all four systems jointly resulted in committor values of less than 0.5 for these (see main text). 
Top: The committor calculated from a Gm6AC-specific model is shown on the y-axis. Based on this 
analysis, structures, which had been observed to be productive only in control simulations, were 
included to increase the diversity of the committor-based PIGS ensemble. Additionally, the 
selected clusters were required to contain at least 20 configurations from Gm6AC, which is 
encoded by the color of the circle. The cluster index is annotated (cf. Fig. S8). Bottom: 
Representative cartoon images for the clusters referenced above. The protein domain is in green 
with the RNA in orange/blue. The orientation and viewing angle are comparable for most 
renderings. 
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Figure S8. PIGS ensemble initiated based on the committor of a preliminary MSM. Top. Number 
of replicas originating from a specified cluster (cf. Fig. S7). Due to the adaptive termination and 
duplication of replicas, not all clusters can or should necessarily survive the full simulation time 
(those marked with an asterisk did not). Bottom. The time-resolved number of replicas that 
exceed the distance threshold for successful unbinding of the central adenine from the aromatic 
cage (equivalent to Fig. 5 in the main text). 
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Figure S9. Color map of committor values per replica. The value of qMSM is calculated from a joint 
MSM for CS and PIGS constructed specifically for the AAA system. The aggregate data are shown 
in Fig. 6 in the main text. 
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Figure S10. Contact maps for GAC-YTHDC1. Top panels. A contact is counted in a given molecular 
configuration if the smallest heavy atom distance between two residues is below 5 Å. Only 
intermolecular contacts are shown here, but all residue pairs are considered in the subsequent 
featurization. The protein residues selected for diversification in PIGS are highlighted by the 
magenta lines. Lighter squares indicate residue pairs considered for featurization. Top left. 
Contact map for the first 25 ns. Top middle. Contact map for 175-200 ns. Top right. Heat map of 
the absolute difference in contact frequencies. This was the map used to identify contacts 
carrying information on the unbinding process. Bottom. The number of remaining residue pairs 
as a function of the chosen cutoff in differential contact frequency based on contact maps of GAC 
at 0-25 ns and 175-200 ns. 
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Figure S11. Time evolution of committor values for several (partial) unbinding events. The 
clustering resolution changes across columns (annotation on top) while the assumed lag time of 
the MSM (in multiples of 50 ps, same as Fig. S12) changes across rows (annotation on the left). 
Each panel contains several curves distinguished by color, each representing an individual 
unbinding or partial unbinding event tracked through the PIGS trajectory ensemble. The influence 
of both parameters on the committor values, qMSM, is comparatively weak. 
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Figure S12. Implied timescales for a MSM describing all four nucleotide systems jointly based 
on various clustering resolutions. The four slowest timescales are shown in every panel and are 
distinguished by color. Data are plotted as a function of MSM lag time, covering the same range 
of values as Fig. S11. The different panels correspond to different clustering resolutions with the 
bottom four being the same as those shown in Fig. S11. 
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Figure S13. Flow chart of system preparation for pentanucleotide runs. GGm6ACU and GGACU 
were each prepared both using Amber and CHARMM36 forcefields. Each of the four systems was 
simulated in 16 replicates of 200 ns each. 
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Figure S14. Sensitivity of the equilibrium dissociation constant KD. Data are plotted as a function 
of the applied cutoff to determine the fraction of the intact complex, and subsequently the 
effective concentration of [LR], [L], and [R]. 
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