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Most processes of life are the result of polyvalent in-
teractions between macromolecules, often of heterogeneous
types and sizes. Frequently, the times associated with these
interactions are prohibitively long for interrogation using
atomistic simulations. Here, we study the recognition of N6-
methylated adenine (m6A) in RNA by the reader domain
YTHDC1, a prototypical, cognate pair that challenges simula-
tions through its composition and required timescales. Simu-
lations of RNA pentanucleotides in water reveal that the
unbound state can impact (un)binding kinetics in a manner
that is both model- and sequence-dependent. This is important
because there are two contributions to the specificity of the
recognition of the Gm6AC motif: from the sequence adjacent to
the central adenine and from its methylation. Next, we estab-
lish a reductionist model consisting of an RNA trinucleotide
binding to the isolated reader domain in high salt. An adaptive
sampling protocol allows us to quantitatively study the disso-
ciation of this complex. Through joint analysis of a data set
including both the cognate and control sequences (GAC,
Am6AA, and AAA), we derive that both contributions to
specificity, sequence, and methylation, are significant and in
good agreement with experimental numbers. Analysis of the
kinetics suggests that flexibility in both the RNA and the
YTHDC1 recognition loop leads to many low-populated un-
binding pathways. This multiple-pathway mechanism might be
dominant for the binding of unstructured polymers, including
RNA and peptides, to proteins when their association is driven
by polyvalent, electrostatic interactions.

The discovery of ever more varied, polyvalent interactions
between macromolecules has revealed living cells to be gov-
erned by highly connected, malleable interaction networks
(1, 2). While some level of abstraction will always be desirable
if not required for human comprehension, the combined
phenomena of intrinsic disorder in biopolymers, compart-
mentalization, and weak, transient interactions fuel the belief
that reductionist approaches fall short of capturing all but the
most idealized processes with sufficient accuracy. Crucially,
mechanisms relevant for the fine regulation in vivo arise from
interactions both between different copies of macromolecules
(e.g., protein-protein-interactions, aggregating proteins) as well

as different classes of macromolecules (e.g., protein-RNA-
complexes).

In an attempt to offer mechanistic explanations as well as
realistic illustrations for such complex interactions, molecular
dynamics (MD) simulations can be a valuable tool. It has been
a recent focus of MD to model larger, more complex molec-
ular (sub-)systems of heterogeneous composition (3–5).
Modern iterations of force fields (FFs) have been tweaked to
model intrinsically disordered proteins more accurately (6, 7),
and simulations of very large systems like intracellular con-
densates (8) or virus capsids (9, 10) have been attempted.
RNA-protein complexes have received some attention as a
particularly challenging type of molecular system (11–13): the
binding is often sequence-specific yet driven in part by elec-
trostatic complementarity and involves single-stranded RNA
that is largely unresolved experimentally. As the systems
modeled grow in size and in compositional complexity, so does
the range of relevant timescales. This is often addressed by
specialized enhanced sampling techniques, which tend to pose
additional challenges during analysis.

The reversible, posttranscriptional modification of mRNA is
one among many examples of the expansion to the regulatory
pathways available to the cell (14). These so-called epitran-
scriptomic modifications have received attention for their
implication in various cellular processes (15). A chemically
often rather subtle modification can specifically alter the
interaction properties of RNA with proteins, which is a
pervasive interaction in biology. Unsurprisingly, the dysregu-
lation of epitranscriptomic modifications can be accompanied
by disease (16), making modified mRNA a target for thera-
peutic endeavors (17).

The installation of a methyl group on N6 of adenine (N6-
methylated adenine, m6A) is the most common RNA modifi-
cation, and it is embedded in the consensus DRACH-motif
(D = G/A/U, R = G/A, H = A/U/C) which is recognized by
the “reader”-protein YTHDC1 (18). The GGACU consensus
sequence originates from the writer-complex responsible for
the installation of the m6A modification. However, biochem-
ical measurements have determined a certain degree of
sequence-specificity with regards to the reader proteins. Spe-
cifically for YTHDC1, from oligonucleotide models, the mu-
tation of both flanking positions to A or the deletion of these
positions from pentanucleotides leads to a loss in affinity of 1
to 2 orders of magnitude (19, 20). This is comparable to the
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factor of roughly 50 by which affinity drops upon demethyla-
tion, as observed in a slightly different RNA sequence context
(21).

The choice of FF for the simulation of biological systems is
pivotal: each FF corresponds to a different set of parameters
for partially empirical interaction functions, i.e., approxima-
tions. These approximations might be more or less adequate
for different combinations of FFs and systems. For an RNA-
protein complex, the descriptions of both protein and RNA
can lead to systematic FF errors, which have been character-
ized separately. It is fair to say that RNA FFs have received less
attention and proven more challenging than protein FFs as
highlighted by recent evaluations (22, 23), despite claims to the
contrary (24). Divalent ions and descriptions of base stacking
are particular areas of concern. As a consequence, various
RNA parameter revisions have been proposed to alleviate
specific FF deficiencies (25–28). Alternatively, researchers have
developed reweighting schemes such that MD-derived pop-
ulations be made more consistent with NMR measurements a
posteriori (29, 30). Compounding the FF issue, protein-RNA
interactions are inherently hard to explore (31, 32), and FF
evaluations usually have to focus just on maintaining experi-
mentally observed, bound structures (33).

The interplay of parameters can both exacerbate and
compensate systematic errors, but this is not easily known or
tested. As a result, protein parameters that are appropriate for
a protein in water may result in imbalanced interactions in
the presence of nucleic acids. The water model itself is also
known to affect the solvated macromolecules even within a
FF family (6, 24, 34, 35). Systematic evaluations of FF per-
formance will generally be out of reach for the (at least)
ternary system of solvent, protein, and RNA. Thus, we argue
that simulations will have to rely on proper controls instead,
such as comparing methylated to nonmethylated RNA with
the same FF or including variations on the RNA’s consensus
sequence. The Amber cOL3 FF is sometimes cited as the
most appropriate for atomistic simulations of RNA (36),
although systematic comparisons are not common (22). For
simulations of RNA-protein complexes, the consensus is even
less clear: for example, comparing Amber and CHARMM
variants has led to some contradictions in describing the
binding of proteins to mRNA containing N6-methyladenine
(19, 37).

In this work, we aim to contribute to the effort of extending
the scope of molecular systems studied by MD by investigating
one of the epitranscriptomic modules. We first investigate the
behavior of the oligo-RNAs GGACU and GGm6ACU in water,
which has the potential to reveal the nature of the unbound
state, along with possible sources of FF-based disagreements.
Further, we use an adaptive sampling scheme to scrutinize the
sequence dependence of m6A recognition by a YTH domain,
which, for the purpose of this manuscript, can be regarded as a
prototypical reader module (Fig. 1). We demonstrate that
modern high-performance computing architectures in
conjunction with optimized MD engine code and adaptive
sampling methods permit interrogation of RNA unbinding
from the YTH-domain. We further gauge the relative

importance of the cognate sequence compared to the
methylation state of the RNA. Lastly, we ask whether domi-
nant unbinding pathways can be identified that permit the
assignment of rate-limiting steps to a given sequence and
methylation state. We note that a model-derived ground truth
is not available, which prevents an assessment of our sampling
strategy with respect to systematic errors. To circumvent this,
experimental knowledge is often brought in for comparison,
and we do the same here, but this has a number of caveats (38,
39). Thus, in first instance, the analysis of such complex data
sets calls for unsupervised, data-driven techniques.

Results

Conformational ensembles of GGACU and GGm6ACU in water

We first aimed to determine the impact of methylation on
structural features of monomeric RNA in MD simulations.
Furthermore, we wanted to gauge whether two FFs, Amber
and CHARMM, differ in these properties. The conformation
of the pentanucleotide GGACU is essentially described by 31
dihedral angles. The first two principal components (PCs)
constructed from those dihedral angles (40) along the simu-
lation trajectories capture most of the dynamics of the phos-
phoribose backbone (Fig. S2). Restricting ourselves to the
monomeric state and short chains with the consensus
sequence makes the simulations tractable but eliminates a
number of avenues in which methylation can act in reality
(41–43), which is a caveat.

Amber and CHARMM lead to populations of roughly the
same area in PC space (Fig. 2, top panel). However, simulations
under Amber lead to smaller, more sharply delineated minima
compared to CHARMM. This is true not only for the shown
components, but coupling between dihedral angles as
measured by mutual information was overall markedly tighter
in Amber (Fig. S3). In addition to the more structured free
energy landscape in Amber, methylation has a distinct effect
on both FFs. In CHARMM, m6A further broadens the existing
minima with the main modes remaining heavily populated
(Kullback-Leibler divergence: 4.7). Amber, in contrast, shifts
the majority of the main configurations to minor modes upon
methylation, which is a more pronounced shift (Kullback-
Leibler divergence: 15).

To make the notion of major shared states between FFs
explicit, a tree-based clustering is applied to the top 10 PCs
(83% of variance; Fig. S2) for a systematic assignment of states.
The clustering is agnostic to the methylation state and is
applied to all samples jointly, thus identifying each FF’s pref-
erential states. Moreover, the clustering reports on how
methylation changes the conformational preference for a given
FF. Figure 2 (bottom panel) indicates that the 10 most popu-
lated states are almost all shared, both between FFs and be-
tween methylation states, albeit often with a strong imbalance.
The four most populated clusters, which accumulate roughly
one half of the total weight (Fig. S4), are dominated by con-
figurations resulting from CHARMM36. Clusters 4 to 8 are
populated preferentially by methylated RNA from both FFs.
Beyond the four largest states, it is expected that the less
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populated clusters consist predominantly of Amber-specific
conformations, as seen for clusters 4 or 7 to 9. Each of them
accounts for <5% of sampling, which corroborates the notion

that Amber introduces multiple, sharply separated minima.
Part of this behavior may be explained by Amber favoring base
stacking (Fig. S5), which is an important feature of

Figure 1. Cartoon visualizations of the studied system. Top: PDB entry 4R3I forms the basis for the unbinding studies and FF comparisons presented
here. The aromatic cage, including Ser378, and basic protein residues that bind the RNA in the crystal structure are highlighted in cyan. The RNA itself is
shown in orange and dark blue. Bottom: The four trinucleotides subject to unbinding simulations from the YTH protein domain. Gm6AC represents the
canonically bound target, AAA is the designated negative control. The methyl-group of m6A is represented as an orange sphere. FF, force field; m6A, N6-
methylated adenine; PDB, Protein Data Bank.
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nucleobases, but is modeled empirically, mostly through
Lennard-Jones interactions, in classical FFs (44).

The differing effect of the methylation also manifests itself
in the sugar pucker of adenosine, which, from NMR data, is
normally in a ns-regime for interconversion (45, 46). Simu-
lations are generally able to explore this equilibrium, at least
locally and for unmodified RNA (47). However, significantly
slower timescales are known (48), and the pucker transition
may thus, directly or by its coupling to nearby dihedral
angles, contribute to long timescales of conformational
evolution in RNA-protein simulations. In Amber, both major
modes, C30-endo and C20-endo are populated, as is canonical
for RNA. Methylation shifts the equal populations such that
the C30-endo configuration is preferred slightly. CHARMM,

on the other hand, permits C20-endo configurations only for
N6-methylated adenine (Fig. 3, top panel). Justifying this
coupling is difficult since the methylation occurs on a distant
site compared to the ribose backbone. While the population
of the major sugar pucker modes of m6A is similar under
both FFs, the differences matter since we use unmethylated
RNA as a reference in simulations (Experimental procedures:
PIGS simulations of unbinding). The treatment of the
dihedral angle of m6 itself differs as well: on the timescales
probed here, no transitions from the initial, and preferred
(49, 50), syn-configuration occurs in Amber. CHARMM
permits such transitions more readily, even overestimating
the anti-population compared to experimental values (42)
(Fig. 3, bottom panel), while also recognizing the partial

Figure 2. Structural properties of GGACU in water in methylated and unmethylated states. Top: 2D-histogram of the projection onto the two first PCs.
Some of the most populated clusters are marked on the projection. The components’ fraction of the total variance is noted in parentheses. Bottom: relative
population of the 10 most populated clusters across the four setups. PC, principal component.

Specificity of the recognition of m6A-RNA

4 J. Biol. Chem. (2024) 300(12) 107998



pyramidal structure at N6, which seems to be overlooked by
Amber.

In choosing a nucleic acid FF, ambivalent trends are a
common problem (36). Here, we would prefer AMBER for a
lesser impact of m6A overall but CHARMM for lower free
energy barriers and better N6 geometry. This is confounded by
the fact that m6A is a FF addition, which means that the pa-
rameters (37, 51, 52) are less tested and often fail to be updated
as the parent FF evolves, leading to eventual deprecation.
Based on Figures 2 and 3, it is also unclear how much m6A
parameters are actually linked to the parent FF (Supplemen-
tary Methods, Parameterization of m6A). For example, the
largest clusters contain more examples that are predominantly
methylation-specific than that are FF-specific. This weak
“heritage” is also directly visible in the partial charge
parameters.

In summary, global and local structural descriptors and
measures of similarity are leveraged for a detailed view of
differences in the conformational ensembles of GGACU and
GGm6ACU in two FFs. Analysis based on dihedral angles re-
veals that major clusters are shared across all four combina-
tions. Globally, Amber leads to a more structured free energy
landscape and tighter coupling between nearby angles than
CHARMM. Beyond the backbone,m6A can transition between
syn- and anti-configurations, but only in CHARMM. At the
same time, Amber is more permissive and consistent with
respect to transitions between configurations of the sugar

pucker. We conclude that these details matter and must be
kept in mind throughout: the methylation of RNA is certain to
have some impact on the structural properties of single-
stranded, unfolded, monomeric RNA, but there is no
consensus on what exactly these changes should be. This is in
addition to the neglection of the more complex unbound-state
effects alluded to above. Structurally, there is evidence from
various in vitro data that m6A must be in a loop-like or single-
stranded region for binding to occur (53).

Adaptive sampling efficiently achieves trinucleotide unbinding

The YTH-domain is characterized by an aromatic cage, of
which two tryptophan residues, Trp428 and Trp377, appear
fully conserved. The third Trp residue is replaced by Leu380 in
the DC1 protein (15). In the reference crystal structure 4R3I
(20), the methylated N6 of the inserted adenine residue is in
syn-configuration (Fig. 1). Inside the cage, the hydrogen on N6
forms a hydrogen bond with the backbone oxygen of Ser378.
The adenine base is contained by a loop (residues Val429 –
Leu439), closing the binding site from above. In particular,
Met434 appears to clamp down on the inserted adenine.
Residues Met438 and Lys437 may assume similar functions
upon fluctuations of the loop (Fig. 4). Interestingly, both
Ser378 and Met438 can be mutated to alanine while reducing
affinity only by a factor of less than 3 (54). This suggests a
certain malleability of parts of the binding site, which is

Figure 3. Configurational details of the central adenine in the absence of protein. Top: distribution of sugar pucker of the central adenine in GGACU or
GGm6ACU in the absence of protein. Bottom: distribution of the dihedral angle of m6 relative to the purine ring (CM6-N6-C6-C5) of the central adenine in
GGm6ACU in the absence of protein. m6A, N6-methylated adenine.
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consistent with the presence of multiple Gly, Ala, and a Ser-
residue in the loop, conferring flexibility. The side chains of
Arg404, Lys408, Lys361, Lys472, and Arg475 (highlighted in
cyan on Fig. 1) form a basic patch for the accommodation of
the RNA’s negatively charged phosphate backbone. Conse-
quently, the bases flanking m6A are solvent exposed. In
particular, residues C and U are reported to deviate only
marginally from the crystal-like configuration in MD simula-
tions on the scale of ms. The guanine residues, on the other
hand, do not form such stable ionic interactions and tend to be
much more flexible (54).

The unbinding of GGm6ACU from YTHDC1 occurs on a
timescale that currently seems intractable for conventional
sampling. In Refs. (37, 54) as well as over the course of various
adaptive sampling attempts in our hands, GGACU with and
even in the absence of methylation remained fully bound in a
largely stable pose. This behavior was observed for both
Amber and CHARMM parameter families. We therefore
restricted the scope of our investigation to trinucleotides
instead of pentanucleotides. We anticipate that this reduction
of complexity has a large benefit regarding the accessibility of
timescales while simultaneously preserving the salient features
of the system. In particular, we do not expect the bound pose
of the modified base to be affected, which would be consistent
with the high mutual similarity across many different RNA
species bound to YTHDC1 (Fig. S1). The trinucleotides have
two negatively charged phosphate groups in the backbone and

thus reduced electrostatic interactions with the basic side
chains with respect to the four negative charges of the pen-
tanucleotides. At the same time, bases D and H are pruned
from DRm6ACH, i.e., bases which are known to exhibit low
sequence specificity in experiments. We acknowledge that
boundary artifacts may be introduced at the RNA’s 30 and 50

ends by this pruning. Even with this simplification of the
system in place, the Amber FF did not yield unbinding of
Gm6AC from YTHDC1. In the following, we therefore focus
on sampling obtained using the CHARMM36m FF. Three
negative controls, AAA, Am6AA, and GAC, of which AAA is
expected to be the weakest binder (Fig. 1), were chosen for
investigating the relative impact of altering the consensus
sequence or the methylation state on unbinding and are used
to gauge the sampling efficacy.

The slow timescale of unbinding, even for trinucleotides,
calls for enhanced sampling techniques. Progress Index-
Guided Sampling (PIGS) is an adaptive sampling strategy
free of Hamiltonian biases that exploits parallelism (55). It
periodically terminates redundant replicas, meaning replicas
that appear to be currently in the same area of phase space,
and replaces them with rare configurations from the
ensemble. PIGS thus promotes exploration of newly
discovered configurations. The feature space for defining
redundant configurations is a “hyperparameter” that can be
chosen freely. As a general guideline, in the absence of
known reaction coordinates, choosing a rich feature space
has proved productive in our hands. Here, we settled on
backbone dihedral angles (Φ and j) of protein residues in
the generous vicinity of the binding site along with most
available RNA dihedral angles to define the feature space
(Experimental procedures: PIGS simulations of unbinding).
The flow of the algorithm, in particular how reseeding de-
cisions are made, is explained in detail in “Supplementary
Methods, Details on progress index-guided sampling
(PIGS)”.

The residues chosen to comprise the feature space are
highlighted in Fig. 4, and the majority of them make up the
loop enveloping the aromatic cage. Monitoring the number of
replicas exceeding a distance of 10 Å between N6 and Trp428,
which is at the bottom of the cage, gives a coarse estimate of
the extent of unbinding achieved over the course of the
simulation (Fig. 5). This distance reports on whether the
central adenine has left the binding pocket, which was
exceedingly rare in previous attempts.

Indeed, PIGS succeeds in producing such unbinding in most
replicas for the unmethylated RNAs, GAC, and AAA, within
100 ns. Consistent with its intended role as the weakest binder,
AAA unbinds most readily from the YTH domain. One third
of the replicas exceed the threshold after a few nanoseconds
of PIGS. In contrast, conventional, brute-force sampling ach-
ieves the same extent of dissociation after 200 ns, suggesting
that PIGS confers a speed-up of roughly one order of magni-
tude here. PIGS can be viewed as an entropically driven
sampler that finds rare states through spontaneous fluctua-
tions and a data-driven approach. As such, the acceleration it
confers will be system-dependent and controlled by the

Figure 4. Set of residues deemed important for maintaining the bound
pose. YTHDC1 as seen in 4R3I accommodates methylated adenine in its
aromatic cage (green sticks). Those protein residues that are highlighted as
magenta sticks are, along with the RNA (in orange), subject to diversification
in PIGS. This includes Leu380, which replaces the third residue of the aro-
matic cage. Specifically, the Φ- and j-angles of the chosen protein residues
and nonredundant phosphoribose backbone and glycosidic c-angles
contribute to the definition of the high-dimensional state space PIGS
operates in. PIGS, Progress Index-Guided Sampling.
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specific balance of enthalpic and entropic contributions to-
ward the process of interest.

Compared to AAA, the unbinding of GAC and also Am6AA
is markedly delayed. It is a testament to both the complexity of
the system and the quality of the models that the methylation
appears to have a similar effect as mutating the sequence to the
consensus sequence GAC of the epitranscriptomic writer
complex. The bases of the adjacent nucleotides are largely
solvent-exposed, which holds for a large number of experi-
mentally determined, RNA-bound structures (Fig. S1). Thus,
there is no intuitive mechanism to explain the pronounced
specificity they confer. It is precisely the strength of MD that
such nonobvious behavior can emerge, and it might be rooted
in intermediate or unbound states. The simplicity of the
distance-based reaction coordinate in Figure 5 of course ob-
scures much of the information on the system-specific un-
binding, and we present an analysis of unbinding process based
on a more comprehensive description of the systems below.

As expected, when both consensus sequence and the
methylation of N6 are introduced simultaneously, the complex
is substantially more stable. While the threshold set here is
exceeded a few times, this corresponds to only a single full
unbinding event. In addition, several partial unbinding events
are observed, where m6A retracts from the binding pocket, but
the RNA’s backbone remains bound in the close vicinity of the
binding site. We observed that departure of m6A from the
binding pocket was accompanied by the outward rotation of
the sidechains of two methionine residues, Met434 and
Met438, and of Leu439. Indeed, the loop’s configuration is
diversified substantially in a follow-up run designed to address
the low event count for Gm6AC, and this is described next.

We addressed the dearth of observed unbinding events in
Gm6AC by first constructing a preliminary Markov state
model (MSM) for all four systems jointly. PIGS trajectories
were subjected to a joint, sequence-agnostic clustering. An
MSM was constructed with featurization and construction
following the procedure detailed below and in “Experimental
procedures: MSM construction and rate constant calculation.”
One of the key quantities MSMs can predict is the committor
probability qMSM: it is fixed for boundary states (0 and 1) and
describes the chance, resolved per cluster, that a trajectory
passing through a given cluster will reach the target state (here,
chosen as unbound) before it reaches the source state (here,
bound). Further details on the committor probability and how
it relates to two-state modeling are found in “Supplementary
Methods: Transition path theory (TPT).” Here, we selected
clusters with qMSM<0:5 in the joint model, meaning those that
are more likely to reach the unbound state (qMSM ¼ 0) before
they reach the bound state (qMSM ¼ 1), to constitute the
starting snapshots for a follow-up run also relying on PIGS
(Figs. S7 and S8).

This strategy exploits that PIGS achieves diversification of
its selected feature space from the crystal structure in all sys-
tems (Fig. S6), but unbinding of RNA occurred only to a
varying degree. The joint representation underlying the MSM
permits exploration of unbinding pathways that were not (yet)
observed to be productive in Gm6AC but evidently succeeded
in another system. This approach is conceptually supported by
the close molecular similarity between the trinucleotides. That
said, the joint committor value for the four different systems
has no direct physical interpretation as an unbinding proba-
bility because it effectively allows the ligand to change identity

Figure 5. Unbinding achieved by PIGS for each trinucleotide system. For each point in the simulation time per replica, the number of replicas exceeding
the 10 Å threshold between Trp428 and N6 is recorded. PIGS, Progress Index-Guided Sampling.
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along an unbinding pathway. Instead, our approach is a
pseudo-Bayesian intervention to focus exploration on a subset
of the diversified PIGS ensemble. The Bayesian aspect refers to
the (biological) negative controls for inclusion of prior infor-
mation in the sampling procedure: it provides guesses on what
configurations may be intermediate to unbinding of Gm6AC
and explores them further using adaptive sampling.

Selecting 64 different starting configurations of Gm6AC
from 10 clusters to be evolved with PIGS ensures a structurally
varied ensemble of snapshots (cluster centroids shown in
Fig. S7, bottom panel). PIGS implies that not all of the starting
structures can or should survive the simulation time of 100 ns
(Fig. S8, top panel). Even so, this strategy is highly productive;
the additional sampling (of smaller net size) resulted in
meeting the specified distance threshold in >40 replicas
(Fig. S8, bottom panel) with a wide range of (partially) un-
bound states visited.

In addition to guiding the choice of new starting configu-
rations, the committor can be exploited to assess systemati-
cally how efficient PIGS is at accelerating the unbinding, here
using AAA as an example. PIGS itself is agnostic of explicit
reaction coordinates, pathways, or boundary states; it relies
solely on the feature space and a distance to measure the
redundancy of replicas. The chosen dihedral angles are
therefore not necessarily related to the committor, which is
defined a posteriori. Indeed, this may be the reason why PIGS
leads to varying degrees of unbinding for the four nucleotides
in the first place. An appropriate reaction coordinate is not
easily known a priori, and it is a strength of PIGS to not

presume such knowledge. The distribution of committor
values across simulation time between CS and PIGS reports
that diversification of the chosen feature set does lead to a
marked acceleration of unbinding (Fig. 6). On average, replicas
remain close to the initial structure in CS throughout, while
the whole range of committor values is sampled in PIGS from
a simulation time of 40 ns onward.

We next turn to a more fine-grained representation of the
four PIGS trajectory ensembles. As is common for similar ap-
plications (56–58), we choose a rich set of distances based on a
contact map of GAC for the first and last 25 ns of simulation
time (Fig. S10). The contact map captures which residue pairs
change their contact frequency most strongly upon unbinding
of the RNA. The identified residue pairs encode the proximity
of RNA and protein as well as the configuration of the protein
itself (Fig. 7). The set of protein residues was pruned manually
to exclude features likely to be inconsequential for unbinding,
such as the N- and C-terminal helices, which undergo a slight
change of orientation with respect to one another. The residues
implicated in the remaining pairs intersect to a large degree
with the set of residues subject to diversification in PIGS (cf.
Figs. 4 and 7). The unbinding process can be expressed by
casting the retained residue pairs as pairwise, interatomic dis-
tances. We apply a sigmoidal transform to force these distance-
based features to focus on an intermediate distance regime
(Fig. 7, bottom). This is done primarily to homogenize the
unbound state. Discarding all but seven PCs (preserving 34% of
variance) ensures that the relevant structural information is
captured concisely.

Figure 6. The committor, qMSM, calculated from a joint MSM for CS and PIGS specifically for the AAA system. MSM parameters and boundary state
definitions are provided as Supplementary Information. At each time point, a Tukey-style boxplot describes the distribution over the values of qMSM across
the 64 replicas. The median is marked in orange, the mean is shown in green. A replica-wise colormap of the same data is shown in Fig. S9. MSM, Markov
state model; PIGS, Progress Index-Guided Sampling.
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The progress index (PI) (59) permits intuitive comprehension
of the featurization by arranging snapshots so that self-similar
sets form compact blocks along the x-axis. The resultant
States And Pathways Projected at High Resolution (SAPPHIRE)
plot (60) annotates these blocks geometrically and kinetically,
and Fig. 8 reveals separate regions characterized by low (<6 Å)
as well as high (>20 Å) distance betweenm6A and the aromatic
cage. The first PC (16% of variance) is strongly correlated (r =
0.92) with this distance, which implies that the six remaining
dimensions correspond to orthogonal structural features.
Crucially, several structural substates for both high and low
distance regions are resolved. This suggests that several meta-
stable states are visited, whether on- or off-pathway, and suc-
cessfully captured by the chosen representation.

Most of these metastable states are visited by all four sys-
tems, but differences in relative populations can be gleaned
from the system-specific annotations of the PI and the entropy
of mixing. The basin spanning PI values from 0 to 190,000 is
the notable exception and is populated almost exclusively by
snapshots derived from Gm6AC. It contains all equilibrated
starting configurations of that system while those for AAA,
Am6AA, and GAC are located in the basins to the right. This
suggests that the methylation of GAC introduces a specific
disposition for RNA to assume a crystal-like configuration that
is less accessible to both AAA and unmethylated GAC. Such a
clear partitioning of the bound state is surprising, and we
acknowledge that this might be a result of the parameteriza-
tion in CHARMM where, in the unbound state, we observed

changes on a more global scale compared to Amber (see
above).

The basin corresponding to fully unbound configurations is
located at ca. 780,000 < PI < 980,000 and separated by the
dominant barrier on the PI. Because the initial PIGS run for
Gm6AC offered little in terms of unbinding, qMSM guided us in
how to pick starting configurations. The purple circles in
Figure 8 (bottom) and the dot pattern for the simulation time
of the original run demonstrate that PIGS was successful in
diversification of the crystal structure for Gm6AC albeit for
very few events and that our strategy relying on clustering and
qMSM picks out these interesting points with very high fidelity.
As expected, none of the starting snapshots for the second run
(i.e., the committor-based follow-up run of Gm6AC) come
from the original crystal-like basin on the PI. The simulation
time trace for the second run indicates that, starting from
these intermediate states, we managed to visit all metastable
states, including unbound configurations, in a manner that
resembles the coverage for the other three systems. We chose
here, deliberately, a strategy to produce a system representa-
tion that results in a rich, structured distance spectrum rather
than relying on an optimization framework (cf. Fig. 7) (61–63).
This richness is reflected in a sample from the Euclidean dis-
tance spectrum in the transformed space of interatomic dis-
tances (Fig. 7) as well as an annotated 1D projection, the
SAPPHIRE-plot (Fig. 8).

It is a possible limitation that we created all starting models
from Protein Data Bank (PDB) entry 4R3I (20). Is it conceivable

Figure 7. Featurization of protein-RNA complexes. Pairs of residues are chosen based on a contact map (Fig. S10). For protein residues, both the Ca and
the most distant side chain heavy atom are selected. For RNA, the nitrogen forming the glycosidic bond, C40 , and O30 are selected. From this, we form all
pairwise combinations for every pair of residues meeting the cutoff. Left: protein residues involved in protein-protein distances are marked in orange. Cyan
residues are involved in protein-RNA distances. Green residues feature in both intermolecular and intramolecular residue pairs. Naturally, all three RNA
residues are included but omitted here for clarity. Upper right: the sigmoid function to transform interatomic distances. The parameter c represents the
midpoint of the sigmoidal curve and has units of Å, whereas s is a smoothness parameter. Lower right: distribution of Euclidean distances for 105 randomly
selected pairs of configurations, which are featurized by the sigmoid-transformed interatomic distances. This highlights that the high-dimensional distance
feature space is constructed in a way that offers enough contrast, i.e., is able to resolve different states.
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that some of the metastable states in Figure 8 are anticipated by
experimentally determined structures? Similarly, is the binding
site-focused nature of the metric we use above and below
creating a misleading notion of similarity? To address both
questions, we computed RMSD values for nonsymmetric heavy
atoms that are not in side chains of D, E, K, or R (due to noise
from frequent solvent exposure) from MD samples to a diverse
set of experimental structures. We restricted ourselves to
structures where the 129 contiguous residues from Asp354 to
Leu482 were resolved with complete backbone heavy atoms.
The set includes both holo (4R3I, models 1, 10, 20 from 2MTV
(21), 6ZCN (chain B) (54), 7L4X, 7L4Y (64)), and apo forms
(6ZD9 (54), either chain A or B), representing both NMR and
X-ray structures and different categories of nucleic acid ligands.
From our simulation data, we then identified the 100 snapshots
most similar to each experimental structure. The choice of 100
snapshots is a compromise between having both contrast and
robustness in the analysis.

Table 1 makes three important points. First, the snapshots
most similar to all holo structures cluster in the basins where the
central RNA base is still in the binding site, in particular the one
where the equilibrated starting snapshots for GAC/AAA are

found. They are all already seen during early time points. This
means that the diversity these structures encode is confined to
the bound state, and only a few ns of MD sampling are sufficient
to cover this space. Second, we previously demonstrated two
alternate conformations of the binding loop in the two chains of
6ZD9 (Met438 in/out) (54), and the one clearly incompatible
with RNA binding (Met438 in, chain B) does in fact over-
whelmingly map to the areas of the PI where the base is no
longer in direct contact with Trp428 of the aromatic cage.
Moreover, the fact that the minimum distance snapshots to
both apo structures are obtained at much later simulation times
than those to holo ones is consistent with the idea that apo and
holo states are kinetically distinct, despite their high similarity
experimentally. It is remarkable that this can be picked up even
with a very broad metric as chosen here: the heavy-atom RMSD
across 129 residues. Third, experimental modalities do play a
role: both the NMR models from 2MTV and the crystal struc-
ture 7L4X, which is bound to (partially) double-stranded DNA,
have structural features that make them similar to a wider range
of conformational states than, e.g., 4R3I or 6ZCN.

In summary, the unbinding of the RNA trinucleotides, AAA,
Am6AA, GAC, and Gm6AC, is readily sampled by PIGS. In a

Figure 8. SAPPHIRE plot of PIGS simulations for nucleotide unbinding from YTHDC1. Top: color-coded distance between Cd2 of Trp428, which is part of
the aromatic cage, and N6. Second row: the value of the first PC, which accounts for 16% of the variance, plotted as a color bar. Third row: entropy of the
distribution of which system a snapshot originates from calculated in a rolling window of 1000 frames. The upper bound for perfect mixing of the four
trinucleotide systems is marked by the dashed line. Fourth row: dot plot of the MD simulation time (increasing from bottom to top, 0–200 ns) per snapshot.
The follow-up run for Gm6AC (“ext.”, purple) is stacked on top and differs in that the simulation time does not contain the time it already took in the initial
sampling (“red”): thus, it is homogeneous for all replicas and spans only 0 to 100 ns. The horizontal gridlines give the zero time point per set. Last row: kinetic
annotation based on the negative logarithm of the cut function assuming a three-state system. The cut function is directly proportional to the number of
transitions in the original MD time progression between the sets of 10,000 snapshots to the left and to the right. High values indicate little sampling across
the corresponding point, meaning that it belongs to a kinetic barrier region. The initial, equilibrated simulation snapshot of each replica is marked by a
colored circle following the color code of the plot above. m6A, N6-methylated adenine; MD, molecular dynamics; PC, principal component; PIGS, Progress
Index-Guided Sampling; SAPPHIRE, States And Pathways Projected at High Resolution.
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space defined by a rich set of interatomic distances, unbinding
trajectories visit states that are shared across systems. The
committor-based reseeding, making further use of both
existing trajectory data for Gm6AC and control simulations
with AAA, Am6AA, and GAC, dramatically improved the
sampling of unbinding events for Gm6AC. The total sampling
time amounts to 4 × 64 × 200 ns (starting from the crystal
structure) plus 64 × 100 ns (starting from intermediate com-
mittor values). From a simple analysis of counting unbinding
events for AAA, we conservatively estimated a speed-up of
roughly one order of magnitude with PIGS compared to
conventional sampling (Fig. 5). It is thus reasonable to
conclude that this strategy enables observation of processes
occurring on a much longer timescale than that provided by
the longest sampling time per replica (200–300 ns) and closer
to the cumulative time of (at most) 19ms per system. We
investigate the timescales of unbinding of the four nucleotides
from YTHDC1 as well as the shared (or unique) states in more
detail in the following section.

Unbinding of Gm6AC occurs on the ms timescale in high salt

MSMs synergize well with the adaptive nature of PIGS.
Once the system transitions from an initial state to a new
configuration, that configuration is recognized as nonredun-
dant and will thus be a candidate for replacing copies offering
only redundant information. While this does not increase the
effective number of independently observed events, the
reseeding permits more observations resulting from stochas-
tically evolving the system starting in state i. Therefore, some
of the conditional probabilities PðxtþDt ¼ ijxt ¼ jÞ, which lie at
the core of the MSM, can be estimated with higher accuracy
compared to conventional sampling. The increase in accuracy
is found in particular in transition regions, where good esti-
mates of PðxtþDt ¼ ijxt ¼ jÞ are both crucial for capturing the
system’s dynamics but also difficult to obtain with conven-
tional sampling due to the inherently low population.

MSMs are estimated for each of the four systems separately
but based on a joint clustering. This enforces that the same
resolution be applied to each system. Additionally, states can
be matched exactly, even though, unsurprisingly, not all states
are visited by every system. Out of 1954 MSM clusters in total,

1013 clusters (containing 811,779 out of 1,151,616 snapshots)
are shared by all four systems (Table S1). Furthermore, only
2% of the total sampling (508 clusters made up of 27,457
snapshots) is exclusive to one or two nucleotide systems. The
clustering resolution and the lag time are among the principal
parameter choices of MSMs; objectively correct values cannot
be easily known or selected. Figure S11 suggests that the
MSM’s main output used in this study, the committor, is
rather robust over the tested range of parameter values. We
have previously argued that implied timescales are not reliable
diagnostic tools (65), and, also here, Fig. S12 offers no clear
guidance. Given the low sensitivity of the committor, we
deemed a model constructed with a lag time of 1 ns with the
clustering resolution chosen to be 1954 clusters as appropriate.
This is the finest resolution where each individual,
trinucleotide-specific MSM results in a single connected
component (a few singlet “clusters” notwithstanding).

For a kinetic description of the unbinding process(es)
sampled in each of the systems, we turn to TPT, which posits
that two sets of nodes (synonymous with clusters) must be
declared boundary states, U and B. As explained in “Supple-
mentary Methods, Transition path theory (TPT),” this repre-
sents a conceptually intuitive imposition of two-state logic,
akin to the analyses of many experimental data, onto the
MSM, which in turn is a discretized model of the MD tra-
jectories. The imposition is most appropriate if there is strong
separation of timescales caused by a single barrier separating
two end states exhibiting fast, internal relaxation. Here, we
define U as the unbound state. This state encompasses all
clusters for which the centroid of said cluster has a distance
larger than 25 Å from adenine’s N6 atom to the aromatic cage.
State B is defined as the set of nodes that contain any of the 4 ×
64 starting snapshots (see Table S2). This lumping of clusters
into larger states can introduce shortcuts into the network,
which would compromise the estimation of timescales. For
example, by virtue of defining a homogeneous unbound state
purely based on distance from the binding site, we create a
state that contains the RNA in very different positions relative
to the domain, just all distant. This is imposing the assumption
regarding internal relaxation above, here, that diffusing in
solution does not make a relevant contribution toward the on-
rate.

Table 1
Comparison to experimental structures

Annotation Gm6AC GAC/AAA Am6AA On-path Fully unbound m6A unbound

hRMSDi (Å) hTimei (ns)Progress index (×10−6) < 0.2 0.2–0.34 0.34–0.43 0.43–0.57 0.78–0.98 Other

4R3I (RNA) 0 93 7 0 0 0 0.82 0.9
NMR #1 (RNA) 10 44 14 29 0 3 1.19 15.6
NMR #10 (RNA) 7 44 16 24 0 9 1.22 11.5
NMR #20 (RNA) 8 60 9 21 0 2 1.17 14.3
6ZCN:B (m6A) 0 97 3 0 0 0 0.84 0.9
7L4X (DNA) 17 39 21 20 1 2 0.90 22.0
7L4Y (DNA) 1 93 0 6 0 0 0.83 5.1
6ZD9:A (none) 5 30 19 33 1 12 0.98 42.7
6ZD9:B (none) 6 5 7 7 31 44 1.32 57.9

Columns 2 to 7 list where the 100 closest snapshots to a given structure (column 1) can be found in Figure 8. The class of ligand in the experimental structure is given in
parentheses. All NMR models are from 2MTV. The annotation (row 1) refers to the interpretation derived from the SAPPHIRE plot (Fig. 8), see text. “Time” refers to the
simulation time within the single replica, which for the follow-up run does not include the time sampled in the original run (up to 200 ns). RMSD values are based on heavy atoms
in 129 contiguous residues. They are slightly higher (both minimum and the average shown) for NMR structures than for other holo structures, presumably due to the differing
experimental methodology. The averages are across the 100 closest snapshots.
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Kemény’s constant is a measure of the expected (weighted,
average) time to travel between any two states in a Markovian
network. The values for Kemény’s constant (66) reported in
Table 2 indicate that our coarse-graining does not create
drastic shortcuts in any of the four system-specific networks.
The mean first-passage time to pass between any pair of nodes
is reduced to 80% at most, compared to the network at the
finest resolution we consider, and this is almost entirely due to
the lumping for U. Conversely, defining state B as described
above alters the global dynamical properties of the network
only marginally. The definition of boundaries U and B has
effects on the connectivity of MSM modeling that is consistent
for all four systems, Gm6AC, GAC, AAA, and Am6AA. We
acknowledge that this is purely in relation to the original
clustering and not an assessment in more global terms.

The lack of a kinetically homogeneous “unbound” state is a
typical feature of molecular systems (58), and, in this case, the
heterogeneity is deliberately masked by a data transformation.
A sigmoidal transformation of the selected intermolecular and
intramolecular distances artificially coerces large values to be
treated as homogeneous (invariant). We note that such
transformations only permit a more compact coarse-graining
but do not address the issues of shortcuts and glossing over
slow modes in equilibrating conformations within states when
these states are intrinsically heterogeneous. This applies both
to the original clustering and the lumping step. Here, we also
defined a (somewhat arbitrary) distance threshold for the
lumping of U. Tighter definitions, which tend to remove some
of the shortcuts, will inevitably result in “intermediate” states
that, intuitively, should be unbound. It is desirable but difficult
to avoid such definitions altogether. As an alternative, we here
check for the robustness of either specific observables or global
network properties such as Kemény’s constant.

With two boundary states defined, TPT permits calculation
of the committor qMSM, which in the following differs from the
analogous quantity referenced in Fig. S7 by the inclusion of all
PIGS trajectories, including the reseeded PIGS ensemble of
Gm6AC.

The matched states including dynamical information ob-
tained by TPT are leveraged for the 2D representation shown
in Fig. 9. The position of each state is determined by using
multidimensional scaling, which embeds the pairwise distances
of centroids in the familiar representation described in
“Experimental procedures: System featurization and SAP-
PHIRE plot” in a 2D space. The size of each node is scaled by
the stationary probability of the state it represents. Addition-
ally, the committor of each state is annotated in Fig. 9 by a
color code.

From the mutual similarity of the graph visualizations, it
emerges that most major nodes are shared between systems,
which is consistent with Figure 8. Native-like nodes (red, North
sector of the multidimensional scaling-embedded network) and
the same major unbound node (South sector) exhibit consis-
tently high weight. System-specific states of substantial weight
are found only in few regions of the network projections. For
instance, Gm6AC is characterized by several bound states that
are not found, or only found with negligible weight, for the
negative controls. In the centroids of these states, the RNA’s
backbone is twisted and detached from its crystal-like position
on the protein surface (see insets on Fig. 9).

In contrast, the major unbound node and bound states have,
respectively, the highest and lowest statistical weights in AAA
compared to the other systems. This is consistent with its role
as the strongest negative control. Some of the states that are
structurally most similar to the crystal are marked by an in-
termediate committor value, which might be related to relax-
ation of the protein itself. Moreover, several states with high
statistical weight, which are, however, distinct from the major
unbound node, are visited in GAC (South East sector). These
states are the result of the formation of various encounter
complexes by GAC. The backbone interacts with the positively
charged patch of protein residues in the general vicinity of the
canonical binding site, but in a variety of configurations with
the adenine base distant from the binding pocket.

The committor values (color annotation) and low pop-
ulations suggest that states in the North West sector might be
unproductive for Am6AA, which contrasts Gm6AC. The insets
in Figure 9 suggest that transitions via this region of the
embedded network correspond to unbinding accompanied by
a displaced RNA backbone and a closed protein loop. In
Am6AA, unbinding seems to occur preferentially with a wide-
open loop, such that the RNA’s backbone can largely retain the
crystal configuration. One might therefore conclude that the
altered RNA sequence precludes the trinucleotide from
passaging through these states, i.e., it is a pathway that is
specific to the RNA’s sequence context and that depends, in a
nontrivial manner, on both bound and unbound states.

As alluded to before, it is a caveat that such observations
may be FF-specific. Indeed, the RNA, methylated or not,
changes its conformational preferences depending on the FF. It
is therefore unclear whether this property of the simulation
translates to the system in cellulo. Model errors aside, TPT is a
framework that supports the identification of dominant path-
ways in principle. While we attempted to pinpoint sequence-
or methylation-specific dominant pathways, this investigation
proved inconclusive, see “Supplementary Methods, Transition

Table 2
Kemény constant in units of ns

Lumping Gm6AC GAC Am6AA AAA

Full res. 2637 (100%) 2583 (100%) 2792 (100%) 2491 (100%)
B 2621 (99%) 2557 (99%) 2774 (99%) 2469 (99%)
U 2122 (80%) 2193 (85%) 2342 (84%) 2069 (83%)
B and U 2106 (80%) 2167 (84%) 2324 (83%) 2046 (82%)

The different rows correspond to networks where the bound state (B), the unbound state (U), or both have been lumped based on the criteria given in the text. The data for Gm6AC
are based on MSMs that include the additional sampling generated from intermediate values of q.
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path theory (TPT).” All four networks in Figure 9 display a
similar dense connectivity and hint at many pathways
contributing to the observed net process. This multitude of
pathways is consistent with an association mechanism driven
by electrostatic steering between polyions, similar to what we
observed before (67). The analysis above can be supplemented
quantitatively by deriving rate constants from the committor
along with the MSMs’ transition matrices following standard
TPT (68). From Table 3, it emerges that the association rate
constant, kon, is different for Gm

6AC compared to the negative
controls. When either sequence or methylation state are not
canonical, kon decreases from 0.3 mM−1ms−1 by roughly one
order of magnitude.

The dissociation rate constant, koff, provides contrast be-
tween all four systems and therefore delineates AAA, Am6AA,
and GAC. Whereas the removal of the methylation of N6 is
marked by a tenfold acceleration of unbinding, a changing of
the consensus sequence from Gm6AC to Am6AA (retaining
the methylation) is less drastic; the dissociation rate constant
only triples from 0.26 ms−1 to 0.73 ms−1. For the unmethylated
trinucleotide AAA, koff is increased by more than what one
would expect from independent effects of sequence and

methylation. The individual modifications to Gm6AC account
for a 2.8-fold (altering the sequence) and 7.9-fold (removing
the methyl) change, respectively. The loss of both features
jointly is characterized by a dissociation rate constant of 10.8
ms−1, which is a 42-fold acceleration compared to Gm6AC and
indicates a roughly twofold, cooperative increase.

The resultant dissociation constants, KD, naturally reveal
that AAA is least stably bound with a high-mM KD. Am

6AA
and GAC are each one order of magnitude more stable, and
combining the two modifications results in a high-mM disso-
ciation constant for Gm6AC.

Naturally, these estimates carry various errors, including
statistical errors that derive from the fact that the transition

Figure 9. Multiple pathways of (un)binding of m6A-RNA from YTHDC1. The networks represent the projection of the joint clustering for each of the four
separate trinucleotide systems. The two-dimensional embedding is determined by MDS of the centroids’ pairwise distances (cf. Fig. 7). The states are
represented by circles, which are colored according to their system-specific qMSM values and scaled by their stationary weight. The edges’ widths represent
the transition probabilities, and their color encodes the average qMSM of the two states they connect. For a small selection of states, a Cartoon repre-
sentation of the cluster’s centroid is shown. In these, the protein is in gray, the RNA is in orange (backbone) and blue (bases), and the aromatic cage is in
cyan. Two centroid configurations of clusters belonging to U and B, respectively, are framed. m6A, N6-methylated adenine; MDS, multidimensional scaling;
MSM, Markov state model.

Table 3
Rate constants and dissociation constant derived from TPT analysis

System kon[M
−1ms−1] koff [ms

−1] KD [mM]

AAA 70 (50–100) 10.8 (5.75–16.04) 150 (59–331)
Am6AA 40 (20–90) 0.73 (0.42–1.34) 17 (5–88)
GAC 50 (20–80) 2.05 (1.02–4.05) 44 (12–229)
Gm6AC 300 (120–490) 0.26 (0.18–0.45) 0.87 (0.42–4.58)

Values in parentheses are empirical 90% confidence intervals from 20 repeats with
subsampled transition matrices.
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counts are inevitably undersampled (69). There is by now a
large number of heterogeneous approaches to deal with this
type of uncertainty that often presuppose and vary different
elements, such as the discretization itself. Here, we focus only
on the count matrix that we augment, following prior work
(65), with geometrically informed pseudocounts to improve
robustness. We also subsample it by removing 1% of counts at
random to produce the 90% confidence intervals in Table 3
(from 20 repeats). The confidence intervals mirror the trends
of the numbers obtained for the full networks, and allow the
conclusion that the differences in KD of Gm6AC vs Am6AA/
GAC vs AAA are significant, as are all differences in koff.

Discussion

We have used an adaptive sampling strategy called PIGS
(55) for the examination of oligo-RNA unbinding from a
protein, a process that occurs on timescales of ms or more. In
previously published accounts as well as our own simulation
attempts, m6A embedded in the DRACH consensus sequence
binds too tightly to YTHDC1 for unbinding to be tractable
with conventional MD (37, 54). We tackle this issue by
combining adaptive sampling with a simplification of the
simulation system. The pentanucleotide motif DRACH is
reduced to the central trinucleotide segment, focusing on the
most conserved positions, RAC. The combination of adaptive
sampling and a simplified trinucleotide model is additive in
accelerating unbinding with respect to canonical sampling and
the pentanucleotide system. We relied on control simulations,
where the consensus Gm6AC is replaced by Am6AA, GAC,
and AAA, to contextualize the results for Gm6AC as well as to
inform the sampler for improved exploration. Furthermore,
the four trinucleotides allow dissection of the sequence spec-
ificity from the effect of the methylation. We find that both
properties affect the unbinding in a coupled fashion, with the
methylation of N6 having a somewhat larger impact, as
expected.

In reality, the DRACH motif will be embedded in a much
longer RNA sequence, usually mRNA, when bound to the
YTHDC1 domain (18). This means that the unbound state of
RNA is readily modulated by hybridization or nonspecific as-
sociation. This can occur both intramolecularly (53) and
intermolecularly (42), and the resultant complexity provides
mechanisms for highly indirect alterations of the binding
stemming from distal sites (whether protein or RNA), one
particularly stunning example being the formation of bio-
molecular condensates containing both RNA and YTHDC1
(70). This wider view of unbound state effects is undoubtedly
essential for understanding the behavior of the cell and
explaining some in vitro results (see below), but the underlying
processes, hybridization, and folding, are out of reach for
routine, atomistic simulations and challenging to capture even
in coarse-grained models (71), at least without sacrificing
significant spatial resolution (72). Our results of the penta-
nucleotides in water primarily provide a hypothesis for why
one might see differences within the stylized settings we have
adopted here for the simulations of protein-RNA complexes.

Our RNA-only simulations exhibit nontrivial differences for
the two FFs, CHARMM, and Amber. RNA and DNA FFs are
mostly parameterized, tested, and refined with folded states in
mind, which can lead to residual biases for single-stranded
segments, such as excessive base stacking or misleading
puckering preferences (44, 73). They are also in constant flux
(36), with numerous, problem-specific adjustments being
proposed (25, 74), while focusing on tractable systems, mostly
tetraloops (26). In the unpaired state, the dihedral angle
aroundm6 should favor the anti-conformation with the methyl
pointing away from the 5-ring, a preference that is inverted in
the paired state (42, 75). On the limited time scales available,
we observe isomerization from the initial syn-configuration in
CHARMM but not in Amber (75, 76). A tendency toward
lower free energy barriers in CHARMM than in Amber
emerges in general (Fig. 2, top panel), suggesting that config-
urational fluctuations, which are likely required to facilitate
unbinding, are accessed more easily. In the context of our
simulations of the complex, it is exactly these spontaneous
fluctuations that are readily amplified by PIGS: the algorithm
exploits them to promote exploration in an adaptive manner
(55).

While comparative studies of FFs are fundamental at the
community level to understand the limitations of different
models, there are almost always two additional factors to
consider. Can the models be sampled? Are there additional
species creating heterotypic interactions (protein, water, and
ions)? Even basic thermodynamic signatures of biomolecular
processes can depend on the water model more so than on the
FF (34). Here, our guiding principle in choosing CHARMM
was the need to obtain sufficient sampling. In Tucker et al.
(77), four out of six protein-RNA complexes were virtually
rigid on the 50 ms timescale using an Amber variant. Irre-
spective of how reasonable this is, it is impractical for sampling
larger-scale transitions, and our tests with Amber resembled
this scenario.

From the above, it is clear that both sequence and FF can
thus incur changes to the observable on- and off-rates. That
said, the fact that there is sequence specificity is not obvious
from a structural point of view as both surrounding bases
point outward, Figure 1, and water-mediated effects have been
proposed as a possible mechanism (20, 37). It appears that our
approach coupled to the CHARMM FF describes these chal-
lenging systems accurately enough for drawing insightful
conclusions, which we infer both structurally and thermody-
namically. The data in Table 1 highlight that the unbound
state in our simulations, which all started from the same holo
protein, can closely resemble an apo crystal structure with the
binding site blocked. This is convincing evidence that the
states discovered by the combination of FF and sampling
paradigm are realistic. Moreover, the accuracy of the resultant
ranking of binding affinities as seen in Table 3 for the complex
of YTHDC1 and trinucleotides summarizes the trends
extractable from various isothermal titration calorimetry (ITC)
experiments well. For clarity, our study provides no evidence
that Amber does not describe the system accurately. We
anticipate that the strategies presented here will be particularly

Specificity of the recognition of m6A-RNA

14 J. Biol. Chem. (2024) 300(12) 107998



useful while FFs are further optimized for heterogeneous sys-
tems, which is an active field of research (7, 78–80).

The acceleration conferred by PIGS generally depends on
the balance of entropic and enthalpic barriers to be overcome,
which is system-specific. In the present case, the removal of
two of the negative charges on the backbone, which sacrifices
sequence-unspecific interactions in favor of, putatively, a
substantial reduction of the enthalpic contributions to binding,
is likely to have facilitated the spontaneous unbinding
observed here. We note that ITC data universally suggest
favorable enthalpies for binding RNA to YTHDC1, but that
these vary much more substantially than free energies do (21,
81). In our setup, the high concentration of monovalent ions
was primarily intended to reduce the interaction of the RNA
phosphate backbone with basic protein sidechain residues
further. That said, the counterion concentration may specif-
ically impact the RNA’s structure (82) and/or modulate
intermolecular interactions in a more general sense (8).
Importantly, we make no explicit assumptions about reaction
coordinates or the nature of the underlying free energy surface.
This is an advantage because these system properties are
usually difficult to anticipate, especially for flexible
macromolecules.

The adaptive nature of PIGS permits a seamless analysis
using MSMs (65), a framework that natively handles the tree-
like connectivity of the trajectory ensemble. We supplement
the empirical verification that the committor, the main output
of our analysis, is robust with respect to lag time and clustering
choices, with an explicit statistical assessment based on sub-
sampling the count matrix. These intrinsic controls do not
eliminate the challenge of assessing the fidelity of MSMs in
modeling the data (58, 65). Moreover, we found that it is
infeasible to determine dominant pathways of (un-)binding:
neither a decomposition of the reactive flux nor the clustering
of productive trajectories of random walkers proved conclu-
sive. This finding is consistent with the lack of significantly
populated routes on the 2-dimensional projections of the free-
energy surfaces in Figure 9. It appears that flexible molecules
(i.e., the protein loop and the RNA itself) characterized by
polyvalent interactions lead to highly stochastic, noisy pro-
cesses, which are not readily captured by intuitive and visually
interpretable pathway representations. We note that this might
be a functional prototype: previously, we discovered that the
binding of a peptide to its cognate PDZ protein domain pro-
ceeds through multiple pathways involving nonspecific salt
bridges (67). This hints at a shared origin: evolution might
favor versatility and fast rates in these interactions to facilitate
hyperfine regulation of cellular processes on short enough
timescales.

Ranked or relative affinities are, as opposed to their absolute
counterparts, safer to relate to experiment (39), not least
because the solution conditions here, and in MD in general,
are highly stylized. While kinetic studies of RNA-protein in-
teractions are common (83), we are unaware of measured rate
constants for short oligonucleotides binding to YTHDC1,
which might be because the process is, for most methods,
prohibitively fast (the on-rates in Table 3 are near the

diffusion-limited regime, �108 M−1s−1). In terms of relative,
thermodynamic effects, our results are consistent with data
from ITC experiments. The cognate trinucleotide sequence
was found to have an affinity of 28 mM (20). In the same work,
the change from GGm6ACU to GAm6ACU either in the
pentanucleotide or in longer chains brought about a 6 to 8-fold
loss in affinity while the drop from GGm6ACU to GGm6AAU
was 3-fold. This suggests a reduction in affinity by a factor of
15 to 25 in going from Gm6AA to Am6AA, which compares
very well with Table 3. Other experimental results point in a
similar direction: Xu et al. report a 5-fold loss for changing
Gm6AC to Am6AC in a longer chain (84). Li et al. find that
pruning D and H from DRACH leads to a 7-fold and 20-fold
reduction, respectively, compared to the 0.5 mM for
GGm6ACU (19). If these effects were independent, it would
predict an affinity of ca. 70 mM for the cognate trinucleotide.
From this, we conclude that the KD values in Table 3 capture
the right trends regarding sequence context; the affinity is too
low by a factor of 10 to 25, however. It is worth noting that the
specific modalities of the ITC experiments also contribute
differences not explained by statistics: for example, the affinity
of the pentanucleotide to YTHDC1 is reported alternatively as
0.5 ± 0.0 mM (19) or 2.0 ± 0.1 mM (20). Moreover, ITC is
usually performed in lower salt concentrations: the trinucleo-
tide affinity of 28 mM was obtained in 150 mM NaCl and
30 mM Tris (20), which is a more than 5-fold lower ionic
strength than our simulations.

Regarding the specific effect of methylation, less data are
available, but Theler et al. measured a 50-fold loss in affinity
for YTHDC1 when demethylating UGm6ACAC (21), which is
exactly what we find in Table 3 for the cognate trinucleotide
sequence. Generally speaking, the RNA sequence matters also
for distal positions, in particular for high-affinity binding: for
example, GAACCGGm6ACUGUCUUA (20) and
CGCGGm6ACUCUG (81) are both nM binders, but the latter
binds tighter: it is clear that these details are beyond the scope
of our study. The existence of binders with very high affinities,
in particular for DC1 relative to other YTH domains, and the
possibility of complex unbound-state effects as discussed
above place a caveat on our results for the diversity of path-
ways. It appears that the engineering toward versatility we
propose above can only hold for RNA that behaves like un-
structured, single-stranded RNA near the recognition motif.

Finally, we discuss possible reasons for why quantitative
predictions might suffer. First, it is a limitation that several
molecular interactions of the system under scrutiny are diffi-
cult to be treated accurately. Despite recent advances, the
quantitatively correct modeling of disorder remains a chal-
lenge in MD (28, 35, 85–87), which is noteworthy because the
flexible loop covering the aromatic cage seems to be heavily
implied in (un-)binding processes. Similarly, classical FFs have
no explicit treatment of methyl-p interactions in the cage: they
approximate base stacking by a mix of standard nonbonded
potentials and preorganization (44, 73). Second, the system
might be too stylized in terms of solution conditions: we, like
most studies, use single copy numbers for the polymers and
disregard the binding of divalent, usually Mg2+, ions to the
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phosphate backbone (88). Third, as a polyelectrolyte, any form
of RNA in water is difficult to model, and it is not surprising
that RNA parameters have seen various revisions over the
years (25–28). Thus, describing the interactions of unstruc-
tured RNA, ions, proteins, and a water model is arguably a
formidable challenge with current FFs (32, 33). In some ap-
plications, the issues mentioned above have lead researchers to
devise ad hoc potentials to prevent undesired behavior of
RNA-protein-complexes (12, 37, 89), which we do not
consider here.

Even a maximally reductionist approach to the composi-
tion of the system under study, i.e. a single copy of oligo-RNA
and protein immersed in a bath of explicit water containing
ions at fixed concentrations, is thus on the fringe of what is
reasonable to treat with current classical FFs, and the use of a
classical model is a concession itself. While the KD value for
Gm6AC in the high micromolar range is likely off by an order
of magnitude, it is therefore encouraging that a relative
ranking of affinities in good agreement with experiment is
achieved (19–21, 84).

Experimental procedures

Pentanucleotides in water

The CHARMM36m FF (51, 87, 90) (GROMACS-port from
March 2019) as well as a FF from the Amber family were used
to perform simulations of 50-GGACU-30 and 50-GGm6ACU-30

in water. In addition, 150 mM NaCl was added in excess. For
CHARMM36m, the structure was solvated in its recom-
mended modified version of TIP3P water. Additional details
can be found in Tables S3 and S4. AmberTools20 (91) was
used to prepare models using the ff99bsc0-cOL3 (92, 93)
parameter set including the Steinbrecher–Case modification of
the Lennard–Jones radius for backbone phosphates (94) for
description of the nucleotides. m6A was described using
published parameters (37), and the OPC water model was used
(95). Li/Merz ion parameters (96) described the ions, and we
used AmberTools20 to convert the resultant topology to
GROMACS-compatible files.

The system was prepared using both FFs in 16 replicates,
which were propagated until a simulation time of 200 ns was
reached. Six of the initial structures originate from the crystal
configuration in PDB 4R3I (20) with different initial velocities,
and 10 were uniformly sampled from a 50 ns simulation of the
crystal structure at 380K (Fig. S13).

The 31 backbone dihedral angles of the pentanucleotide
were projected onto 10 PCs (40), preserving 83% of the vari-
ance. A tree-based clustering (97) served to partition trajec-
tories into 37 states. The smallest cluster radius was set to
2.159� with respect to Euclidean distance in PC-space. Base
stacking and pucker configurations were calculated using the
Barnaba software (https://github.com/srnas/barnaba) (98).

PIGS simulations of unbinding

Simulations using the CHARMM36m FF (March 2019)
were launched with each of GAC, Gm6AC, AAA, and Am6AA
initially bound to YTHDC1 as derived from PDB entry 4R3I.

The complex was enclosed in a cubic box of 70.7 Å3
filled with

TIP3P water and 1M excess NaCl. Configurations were
equilibrated at 300K and 1 bar for 1 ns. Production runs were
started from the snapshot closest to the average volume. The
box volume and the average temperature of 300K were held
fixed. For the latter, the velocity rescaling (99) thermostat with
a coupling time of either 10 ps (Am6AA, an unintended de-
viation discovered later) or 100 ps was used. The long coupling
time was to minimize the quenching of spontaneous fluctua-
tions. Due to the conservative integration settings (see also
Table S4), this had little effect on how well temperature could
be maintained (Table S5). Trajectory input files were prepared
and propagated using GROMACS 2020.3 (100).

The reseeding heuristic at the core of PIGS was calculated
with CAMPARIv4 (http://campari.sourceforge.net). It is
defined in terms of 32 dihedral angles (Table S6). Subse-
quently, 18 of those angles characterize the trinucleotide with
all available nonredundant sugar, phosphate-backbone and
glycosidic angles taken into account, while the remaining 14
are polypeptide Φ- and j-angles. After 50 ns of PIGS simu-
lations of the different trinucleotide-DC1 complexes, the
diversification of features up to that point was evaluated. Since
several nucleotide angles reached a near-uniform distribution,
some phosphate backbone angles were pruned from the
feature set. They included z- and a-angles for both the central
and the 30-nucleotide as well as the g-angle of the central
adenine.

In addition to removing those five dihedral angles charac-
terizing the RNA configuration, additional protein angles were
included in the feature set such that the revised set of features
contained 13 RNA angles and the Φ- and j-angles of 15
protein residues (30 protein angles total) surrounding the
binding site. Both the newly added and the previously chosen
protein features exhibited a low degree of diversification,
which is in part expected as they are part of a folded polymer,
posing much stronger constraints on conformational explo-
ration, even for loop residues, than single-stranded RNA. The
ensemble of trajectories of Gm6AC (re-)started from clusters
with a low committor-value used the revised feature set for the
full 100 ns of PIGS.

For each of the four systems, 64 replicas were propagated for
200 ns. Reseeding of at most 32 replicas occurred every 100 ps.

System featurization and SAPPHIRE plot

A differential cutoff map was constructed (Fig. S10, top
panel). The shortest distance between any two heavy atoms
between all residue pairs of the system was calculated. The
distance was counted as a contact if the distance is shorter
than 5 Å. Such a contact map was constructed separately for
the first and the last 25 ns of the 200 ns of simulation time per
replica. A residue pair was considered for featurization if the
absolute difference in contact frequency between two residues
exceeded 0.35. This resulted in 64 residue pairs (Fig. S10,
bottom panel).

Several intraprotein residue pairs were discarded manually
as they are related to, for example, the partial loss of helicity at
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the termini. The final selection of residues is shown in the top
panel of Figure 7. For each protein residue, both the Ca and
the most distant side chain heavy atoms were selected for the
construction of pairwise distances. For each of the three RNA
residues, three atoms were chosen: C40 and O30 for all residues,
N9 for G and A, and N1 for C.

Intraprotein and intermolecular residue pairs were
restricted to pairs meeting the chosen cutoffs. All three RNA-
RNA residue pairs were considered regardless of contact fre-
quencies. By exhaustively forming atom pairs (four for intra-
protein, nine for intra-RNA, and six for intermolecular residue
pairs) for all selected residue pairs, the unbinding of RNA from
YTHDC1 was described in the end by a feature set of 262
interatomic distances.

These distances were first transformed by a sigmoidal
transform, φðxÞ ¼ 1− ð1þexpð−ðx−cÞ=sÞÞ−1, which is roughly
linear around 15 Å and flattens out near 5 and 25 Å (Fig. 7,
bottom). They are subsequently reduced to seven dimensions
using PC analysis, which, for the single systems, preserves
>60% of the total variance and 34% in the combined repre-
sentation. We note that the reference (“ideal”) distributions
differ for intramolecular and intermolecular contacts if we take
molecular topology as given: the former are bound by
sequence spacing whereas the latter are bound by the simu-
lation container.

The PI (59, 60) arranges all 1,151,616 snapshots so that self-
similar snapshots are found in similar parts of the plot. This is
based on a distance metric: here, the Euclidean distance in the
feature space described above. The approximate PI (59) was
calculated based on a tree-based clustering (97) with the
minimal and coarsest cluster radii set to 0.2 and 3.5, respec-
tively. The three outermost layers of leaves were folded inward
onto their parent vertices (101). The kinetic annotation was
calculated for a three-state model of 10,000 snapshots around
the current PI. The entropy of the distribution of the anno-
tation which system a snapshot originated from was computed
in a rolling window of 2000 snapshots.

MSM construction and rate constant calculation

The tree-based clustering was used for discretization of all
four systems jointly with the transformed, interatomic dis-
tances serving as the feature space. On these joint data, the
clustering resulted in 1954 clusters. An MSM was constructed
for each of the four systems with a lag time of 1 ns using a
sliding window to count transitions (Fig. S12). A prior tran-
sition count was added according to the structural similarity of
the involved clusters, as suggested in prior work (65) (bin
width: 0.002). No symmetry of the count matrix was enforced.

TPT offers a framework for the calculation of transition
kinetics between two boundary states separated by interme-
diate states. TPT was thus used for the calculation of (un-)
binding rates. State B was defined as the union of clusters
containing the starting snapshots in each system. State U
included all clusters for which the centroid snapshot was

characterized by a distance between the aromatic cage and N6
of more than 25 Å. Quantification of the apparent invariance
of the Kemény constant was used to verify that this coarse-
graining did not introduce drastic shortcuts into the
network, and that the definition of boundaries has comparable
effects on the connectivity of all four networks.

The productive flux f þij between pairs of nodes i and j is
calculated from the transition matrix Tij ¼ Pðxt ¼ jjxt−Dt ¼ iÞ,
the stationary probability pi and the plus- and minus-
committors, qþi ; q

−
j , as

fij ¼piTijq
−
i q

þ
j (1)

f þij ¼max
n
0; fij − fji

o
(2)

FBU ¼
X
i2B

X
j62B

f þij ¼
X
i2B

X
j62B

piTijq
þ
j ¼

X
i 62U

X
j2U

piTijq
−
i (3)

FBU denotes the total current between the set of source
nodes B and a set of target nodes U, and it must be the same as
both the net outgoing flux (from B, q−i ¼ 1) and the net
incoming flux (into U, qþj ¼ 1). It can be interpreted as the
fraction of trajectories that are reactive FBU ¼ limt→∞NT=T .
The forward and backward rates nBU ; nUB are then given by:

nBU ¼ FBU
s
PN

i piq−i
(4)

nUB ¼ FUB
s
PN

i pi
�
1−q−i

� (5)

where s is the lag time of the MSM. Bulk rate laws consistent
with the law of mass action express reaction rates in terms of
rate constants and effective concentrations of free reactants,
here [L] and [R], and the complex [LR], where L denotes the
ligand, viz. the different trinucleotides, and R its receptor,
YTHDC1. Our simulations contain a single copy each, so
[L] = [R]. Mass action prescribes that:

nUB ¼ d½LR�
dt

¼ ½L�½R�kon−½LR�koff (6)

nBU ¼ d½L�
dt

¼ − ½L�½R�konþ½LR�koff (7)

By operating on the modified flux network, f þij , that disal-
lows backward flux due to the max-operation, the rate con-
stants can be expressed as:

kon ¼ nUB
½L�½R� (8)

koff ¼ nBU
½LR� (9)

The fraction of the intact complex is calculated according to
the combined stationary probability of states with a committor

Specificity of the recognition of m6A-RNA

J. Biol. Chem. (2024) 300(12) 107998 17



value greater than 0.5. This is the most intuitive definition to
provide a quantitative mapping to a two-state system, but we
note that it does not and (should not) entail a clear geometric
annotation. This is different from many experiments that rely
on probes that have specific structural origins (like the
quenching of tryptophan fluorescence), and on baselines to
map data to two-state models. In our case, the effective con-
centration of the complex is:

½LR� ¼C
X
i

pi1qþi >0:5 (10)

where C denotes the total concentration of solute protein in
the ligand box. The resulting ratio of rate constants reported in
Table 3 is robust over a wide range of cutoff-values (Fig. S14).

Data availability

Trajectory data are available through direct-access links to a
specialized hosting platform where they can be downloaded
(button ”Download”) but also visualized in the browser. The
link for the trajectories of YTHDC1 and 50-Gm6AC-30 in water
is available through the following URL: https://acgui.bioc.uzh.
ch/acgui/?sql_db=acgui_trajectories&sql_id=DC1_Gm6AC_
CHARMM_PIGS&sql_load=1.

To directly access the other complex data, the Gm6AC in
DC1_Gm6AC_CHARMM_PIGS is to be replaced with GAC,
AAA, or Am6AA. To access the pentanucleotide-in-water data,
use identifiers GGACU_Amber and GGm6ACU_Amber (for
the Amber force field), and Gm6ACU_CHARMM36m or
Gm6ACU_CHARMM36m for CHARMM. These values
replace DC1_Gm6AC_CHARMM_PIGS in the above link.
Alternatively, in-site navigation can be used.

Supporting Information—Supplementary data (Supplementary
Methods, Figs. S1–S14, Tables S1–S6) are available: they are uploaded
as a separate PDF.
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